A large-scale testing program on alkali silica reaction (ASR)-affected concrete structural members without shear reinforcement representative of structural members found in nuclear power plants is presented. Three concrete specimens, designed to experience a free expansion rate of approximately 0.15% per year were fabricated and placed within a controlled environmental chamber (38 ± 1 o C (100 ± 2 o F) and 95 ± 5% relative humidity (RH)). Sixty-four (64) embedded transducers and twelve (12) long-gauge fiber-optic sensors provide evidence of strong anisotropic expansion and oriented ASR-induced cracking resulting from the confinement effect caused by the reinforcement layout and additional structural boundary conditions. Surface cracking is not indicative of internal ASR-induced damage/expansion. 2. Large-scale testing program 2.1 Test specimens The structural specimen detail was designed to closely
Alkali-silica reaction has caused damage to concrete structures, endangering structural serviceability and integrity. This is of concern in sensitive structures such as nuclear power plants. In this study, acoustic emission (AE) was employed as a structural health monitoring strategy in large-scale, reinforced concrete specimens affected by alkali-silica reaction with differing boundary conditions resembling the common conditions found in nuclear containments. An agglomerative hierarchical algorithm was utilized to classify the AE data based on energy-frequency based features. The AE signals were transferred into the frequency domain and the energies in several frequency bands were calculated and normalized to the total energy of signals. Principle component analysis was used to reduce feature redundancy. Then the selected principal components were considered as features in an input of the pattern recognition algorithm. The sensor located in the center of the confined specimen registered the largest portion of AE energy release, while in the unconfined specimen the energy is distributed more uniformly. This confirms the results of the volumetric strain, which shows that the expansion in the confined specimen is oriented along the thickness of the specimen.
Nondestructive analysis of alkali-silica reaction damage in concrete slabs using shear waves AIP Conference Proceedings 1949, 040003 (2018) Abstract. Alkali-Silica Reaction (ASR) is a reaction that occurs over time in concrete between alkaline cement paste and reactive, non-crystalline silica in aggregates. An expansive gel is formed within the aggregates which results in microcracks in aggregates and adjacent cement paste. The reaction requires the presence of water and has been predominantly detected in groundwater-impacted portions of below grade structures, with limited impact to exterior surfaces in above grade structures. ASR can potentially affect concrete properties and performance characteristics such as compressive strength, modulus of elasticity, shear strength, and tensile strength. Since ASR degradation often takes significant amounts of time, developing ASR detection techniques is important to the sustainability and extended operation lifetimes of nuclear power plants (NPPs). The University of Tennessee, Knoxville (UTK) in collaboration with Oak Ridge National Laboratory (ORNL) designed and built an experiment representative of typical NPP structures to study ASR in thick concrete structures.
MOTIVATION, DESIGN, AND IMPLEMENTATION
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.