Speciation often involves the evolution of numerous prezygotic and postzygotic isolating barriers between divergent populations.Detailed knowledge of the strength and nature of those barriers provides insight into ecological and genetic factors that directly or indirectly influenced their origin, and may help predict whether they will be maintained in the face of sympatric hybridization and introgression. We estimated the magnitude of pre-and postzygotic barriers between naturally occurring sympatric populations of Mimulus guttatus and M. nasutus. Prezygotic barriers, including divergent flowering phenologies, differential pollen production, mating system isolation, and conspecific pollen precedence, act asymmetrically to completely prevent the formation of F 1 hybrids among seeds produced by M. guttatus (F 1 g), and reduce F 1 hybrid production among seeds produced by M. nasutus (F 1 n) to only about 1%. Postzygotic isolation is also asymmetric: in field experiments, F 1 g but not F 1 n hybrids had significantly reduced germination rates and survivorship compared to parental species. Both hybrid classes had flower, pollen, and seed production values within the range of parental values. Despite the moderate degree of F 1 g hybrid inviability, postzygotic isolation contributes very little to the total isolation between these species in the wild. We also found that F 1 hybrid flowering phenology overlapped more with M. guttatus than M. nasutus. These results, taken together, suggest greater potential for introgression from M. nasutus to M. guttatus than for the reverse direction. We also address problems with commonly used indices of isolation, discuss difficulties in calculating meaningful measures of reproductive isolation when barriers are asymmetric, and propose novel measures of prezygotic isolation that are consistent with postzygotic measures.
The idea that natural hybridization has served as an important force in evolutionary and adaptive diversification has gained considerable momentum in recent years. By combining genome analyses with a highly selective field experiment, we provide evidence for adaptive trait introgression between two naturally hybridizing Louisiana Iris species, flood-tolerant Iris fulva and dry-adapted I. brevicaulis. We planted reciprocal backcross (BC 1 ) hybrids along with pure-species plants into natural settings that, due to a flooding event, favored I. fulva. As expected, I. fulva plants survived at much higher rates than I. brevicaulis plants. Backcross hybrids toward I. fulva (BCIF) also survived at significantly higher rates than the reciprocal backcross toward I. brevicaulis (BCIB). Survivorship of BCIB hybrids was strongly influenced by the presence of a number of introgressed I. fulva alleles located throughout the genome, while survivorship in the reciprocal BCIF hybrids was heavily influenced by two epistatically acting QTL of opposite effects. These results demonstrate the potential for adaptive trait introgression between these two species and may help to explain patterns of genetic variation observed in naturally occurring hybrid zones.
Both selective and random processes can affect the outcome of natural hybridization. A recent analysis in BMC Evolutionary Biology of natural hybridization between an introduced and a native salamander reveals the mosaic nature of introgression, which is probably caused by a combination of selection and demography.
Abstract. Iris fulva and I. brevicaulis are long-lived plant species known to hybridize where they coexist in nature. Year-to-year survival contributes significantly to overall fitness for both species and their hybrid derivatives, and differences in hybrid survivability may have important consequences to interspecific gene flow in nature. We examined the genetic architecture of long-term survivorship of reciprocal backcross I. fulva ϫ I. brevicaulis hybrids in a commongarden, greenhouse environment. Differences in mortality were found between the two backcross (BC 1 ) hybrid classes, with hybrids crossed toward I. fulva (BCIF) revealing twice the mortality of those hybrids backcrossed toward I. brevicaulis (BCIB). Using genomic scans on two separate genetic linkage maps derived from the reciprocal hybrid populations, we found that hybrid survivorship is influenced by several genetic regions. Multiple interval mapping (MIM) revealed four quantitative trait loci (QTLs) in BCIF hybrids that were significantly associated with survivorship. Introgressed I. brevicaulis DNA increased survivorship at three of the four QTLs. For the fourth QTL, introgressed I. brevicaulis DNA was associated with decreased survivorship. No QTLs were detected in BCIB hybrids; however, single-marker analysis revealed five unlinked loci that were significantly associated with survivorship. At all five markers, survivorship was positively associated with introgressed I. fulva DNA. The present findings have important implications for the evolutionary dynamics of naturally occurring hybrid zones. Regions of the genome that increase survivorship when in a heterozygous (i.e., hybrid) state should have an increased likelihood of passing across species boundaries, whereas those that decrease survivorship will be less likely to introgress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.