A common problem in applied mathematics is that of finding a function in a Hilbert space with prescribed best approximations from a finite number of closed vector subspaces. In the present paper we study the question of the existence of solutions to such problems. A finite family of subspaces is said to satisfy the Inverse Best Approximation Property (IBAP) if there exists a point that admits any selection of points from these subspaces as best approximations. We provide various characterizations of the IBAP in terms of the geometry of the subspaces. Connections between the IBAP and the linear convergence rate of the periodic projection algorithm for solving the underlying affine feasibility problem are also established. The results are applied to investigate problems in harmonic analysis, integral equations, signal theory, and wavelet frames.
Moreau's decomposition is a powerful nonlinear hilbertian analysis tool that has been used in various areas of optimization and applied mathematics. In this paper, it is extended to reflexive Banach spaces and in the context of generalized proximity measures. This extension unifies and significantly improves upon existing results.
Given a distribution f belonging the Sobolev space H 1Â2 , we show that partial sums of its wavelet expansion behave like truncated versions of the inverse Fourier transform of f . Our result is sharp in the sense that such behavior no longer happens in general for H s if s<1Â2.
Academic Press
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.