Global Natural Product Social Molecular Networking (GNPS) is an interactive online small molecule-focused tandem mass spectrometry (MS 2 ) data curation and analysis infrastructure. It is intended to provide as much chemical insight as possible into an untargeted MS 2 dataset and to connect this chemical insight to the user's underlying biological questions. This can be performed within one liquid chromatography (LC)-MS 2 experiment or at the repository scale. GNPS-MassIVE is a public data repository for untargeted MS 2 data with sample information (metadata) and annotated MS 2 spectra. These publicly accessible data can be annotated and updated with the GNPS infrastructure keeping a continuous record of all changes. This knowledge is disseminated across all public data; it is a living dataset. Molecular networking-one of the main analysis tools used within the GNPS platform-creates a structured data table that reflects the molecular diversity captured in tandem mass spectrometry experiments by computing the relationships of the MS 2 spectra as spectral similarity. This protocol provides step-by-step instructions for creating reproducible, high-quality molecular networks. For training purposes, the reader is led through a 90-to 120-min procedure that starts by recalling an example public dataset and its sample information and proceeds to creating and interpreting a molecular network. Each data analysis job can be shared or cloned to disseminate the knowledge gained, thus propagating information that can lead to the discovery of molecules, metabolic pathways, and ecosystem/community interactions.
Herein, we present a protocol for the use of Global Natural Products Social (GNPS) Molecular Networking, an interactive online chemistry-focused mass spectrometry data curation and analysis infrastructure. The goal of GNPS is to provide as much chemical insight for an untargeted tandem mass spectrometry data set as possible and to connect this chemical insight to the underlying biological questions a user wishers to address. This can be performed within one experiment or at the repository scale. GNPS not only serves as a public data repository for untargeted tandem mass spectrometry data with the sample information (metadata), it also captures community knowledge that is disseminated via living data across all public data. One or the main analysis tools used by the GNPS community is molecular networking. Molecular networking creates a structured data table that reflects the chemical space from tandem mass spectrometry experiments via computing the relationships of the tandem mass spectra through spectral similarity. This protocol provides step-by-step instructions for creating reproducible high-quality molecular networks. For training purposes, the reader is led through the protocol from recalling a public data set and its sample information to creating and interpreting a molecular network. Each data analysis job can be shared or cloned to disseminate the knowledge gained, thus propagating information that can lead to the discovery of molecules, metabolic pathways, and ecosystem/community interactions.
Herein, we present a protocol for the use of Global Natural Products Social (GNPS) Molecular Networking, an interactive online chemistry-focused mass spectrometry data curation and analysis infrastructure. The goal of GNPS is to provide as much chemical insight for an untargeted tandem mass spectrometry data set as possible and to connect this chemical insight to the underlying biological questions a user wishers to address. This can be performed within one experiment or at the repository scale. GNPS not only serves as a public data repository for untargeted tandem mass spectrometry data with the sample information (metadata), it also captures community knowledge that is disseminated via living data across all public data. One or the main analysis tools used by the GNPS community is molecular networking. Molecular networking creates a structured data table that reflects the chemical space from tandem mass spectrometry experiments via computing the relationships of the tandem mass spectra through spectral similarity. This protocol provides step-by-step instructions for creating reproducible high-quality molecular networks. For training purposes, the reader is led through the protocol from recalling a public data set and its sample information to creating and interpreting a molecular network. Each data analysis job can be shared or cloned to disseminate the knowledge gained, thus propagating information that can lead to the discovery of molecules, metabolic pathways, and ecosystem/community interactions.
Premise of the study:Simultaneous analysis of defense-related phytohormones can provide insights into underlying biochemical interactions. Ultra-high-performance liquid chromatographic (UHPLC) techniques hyphenated to electrospray ionization mass spectrometry (ESI-MS) are powerful analytical platforms, suitable for quantitative profiling of multiple classes of metabolites.Methods:An efficient and simplified extraction method was designed followed by reverse-phase UHPLC for separation of seven phytohormones: salicylic acid, methyl salicylate, jasmonic acid, methyl jasmonate, absiscic acid, indole acetic acid, and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. A triple quadrupole multiple reaction monitoring (MRM) method was developed for MS quantification. The methods were applied to analyze phytohormones in Arabidopsis leaf tissue responding to biotic stresses.Results:Under the optimized conditions, the phytohormones were separated within 15 min, with good linearities and high sensitivity. Repeatable results were obtained, with the limits of detection and quantification around 0.01 ng/μL (∼9 ng/g tissue). The method was validated and applied to monitor, quantify, and compare the temporal changes of the phytohormones under biotic stress.Discussion:Quantitative changes indicate increased production of defense phytohormones from the various classes. The analytical method was useful and suitable to distinguish distinctive variations in the phytohormonal profiles and balance in A. thaliana leaves resulting from pathogen attack.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.