BackgroundThe continued advance of antibiotic resistance threatens the treatment and control of many infectious diseases. This is exemplified by the largest global outbreak of extensively drug-resistant (XDR) tuberculosis (TB) identified in Tugela Ferry, KwaZulu-Natal, South Africa, in 2005 that continues today. It is unclear whether the emergence of XDR-TB in KwaZulu-Natal was due to recent inadequacies in TB control in conjunction with HIV or other factors. Understanding the origins of drug resistance in this fatal outbreak of XDR will inform the control and prevention of drug-resistant TB in other settings. In this study, we used whole genome sequencing and dating analysis to determine if XDR-TB had emerged recently or had ancient antecedents.Methods and FindingsWe performed whole genome sequencing and drug susceptibility testing on 337 clinical isolates of Mycobacterium tuberculosis collected in KwaZulu-Natal from 2008 to 2013, in addition to three historical isolates, collected from patients in the same province and including an isolate from the 2005 Tugela Ferry XDR outbreak, a multidrug-resistant (MDR) isolate from 1994, and a pansusceptible isolate from 1995. We utilized an array of whole genome comparative techniques to assess the relatedness among strains, to establish the order of acquisition of drug resistance mutations, including the timing of acquisitions leading to XDR-TB in the LAM4 spoligotype, and to calculate the number of independent evolutionary emergences of MDR and XDR. Our sequencing and analysis revealed a 50-member clone of XDR M. tuberculosis that was highly related to the Tugela Ferry XDR outbreak strain. We estimated that mutations conferring isoniazid and streptomycin resistance in this clone were acquired 50 y prior to the Tugela Ferry outbreak (katG S315T [isoniazid]; gidB 130 bp deletion [streptomycin]; 1957 [95% highest posterior density (HPD): 1937–1971]), with the subsequent emergence of MDR and XDR occurring 20 y (rpoB L452P [rifampicin]; pncA 1 bp insertion [pyrazinamide]; 1984 [95% HPD: 1974–1992]) and 10 y (rpoB D435G [rifampicin]; rrs 1400 [kanamycin]; gyrA A90V [ofloxacin]; 1995 [95% HPD: 1988–1999]) prior to the outbreak, respectively. We observed frequent de novo evolution of MDR and XDR, with 56 and nine independent evolutionary events, respectively. Isoniazid resistance evolved before rifampicin resistance 46 times, whereas rifampicin resistance evolved prior to isoniazid only twice. We identified additional putative compensatory mutations to rifampicin in this dataset. One major limitation of this study is that the conclusions with respect to ordering and timing of acquisition of mutations may not represent universal patterns of drug resistance emergence in other areas of the globe.ConclusionsIn the first whole genome-based analysis of the emergence of drug resistance among clinical isolates of M. tuberculosis, we show that the ancestral precursor of the LAM4 XDR outbreak strain in Tugela Ferry gained mutations to first-line drugs at the beginning of the antibiotic e...
¶ Membership of the GERMS-SA working group is listed in the Acknowledgments .
Background Discordant genotypic/phenotypic rifampicin susceptibility testing in Mycobacterium tuberculosis is a significant challenge, yet there are limited data on its prevalence and how best to manage such patients. Whether to treat isolates with rpoB mutations not conferring phenotypic resistance as susceptible or multidrug-resistant tuberculosis (MDR-TB) is unknown. We describe phenotypic and genotypic characteristics of discordant isolates and clinical characteristics and treatment outcomes of affected patients in KwaZulu-Natal, South Africa. Methods We analyzed clinical isolates showing rifampicin resistance on GenoType MTBDR plus while susceptible on 1% agar proportion method. We measured rifampicin minimum inhibitory concentrations (MICs) using Middlebrook 7H10 agar dilution and BACTEC MGIT 960. Sensititre MYCOTB plates were used for drug-susceptibility testing, and rpoB gene sequencing was performed on all isolates. Local MDR-TB program data were reviewed for clinical information and patient outcomes. Results Discordant isolates constituted 4.6% (60) of 1302 rifampicin-resistant cases over the study period. Of these, 62% remained susceptible to isoniazid and 98% remained susceptible to rifabutin. Rifampicin MICs were close to the critical concentration of 1 µg/mL (0.5–2 µg/mL) for 83% of isolates. The most frequent rpoB mutations were Q513P (25.3%), D516V (19.2%), and D516Y (13.3%). Whereas 70% were human immunodeficiency virus infected, the mean CD4 count was 289 cells/mm 3 and 87% were receiving antiretroviral therapy. Standard therapy for MDR-TB was used and 53% achieved successful treatment outcomes. Conclusions Rifampicin-discordant TB is not uncommon and sequencing is required to confirm results. The high susceptibility to rifabutin and isoniazid and poor treatment outcomes with the current regimen suggest a potential utility for rifabutin-based therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.