<abstract><p>The goal of this study is to develop a novel iterative algorithm for approximating the solutions of the monotone inclusion problem and fixed point problem of a finite family of demimetric mappings in the context of a real Hilbert space. The proposed algorithm is based on the inertial extrapolation step strategy and combines forward-backward and Tseng's methods. We introduce a demimetric operator with respect to $ M $-norm, where $ M $ is a linear, self-adjoint, positive and bounded operator. The algorithm also includes a new step for solving the fixed point problem of demimetric operators with respect to the $ M $-norm. We study the strong convergence behavior of our algorithm. Furthermore, we demonstrate the numerical efficiency of our algorithm with the help of an example. The result given in this paper extends and generalizes various existing results in the literature.</p></abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.