Real Facial expression acknowledgment (RTFER) has become a functioning examination zone that finds a ton of utilizations in territories like human-PC interfaces, human feeling investigation, mental investigation, clinical conclusion and so on Mainstream strategies utilized for this intention depend on math and appearance. Profound convolutional neural networks (CNN) have appeared to beat customary strategies in different visual acknowledgment errands including Facial Expression Recognition. Despite the fact that endeavours are made to improve the exactness of RTFER frameworks utilizing CNN, for functional applications existing strategies probably won't be adequate. This examination incorporates a conventional audit of RTFER frameworks utilizing CNN and their qualities and restrictions which assist us with comprehension and improve the RTFER frameworks further.
In this paper watermark is embedded into audio signal by modifying the samples data with the watermark key. An unvoiced and voiced data with payload equal to 16000 Hz is used for the simulation. Under different noise adding conditions the performance of the system is evaluated. Also in this paper performance of the algorithm is analyzed by varying the bit modification location of the 8 bit sample from LSB to MSB. MATLAB is used for the simulation purpose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.