Chronic kidney disease is one of the deadliest diseases today and it is vital to have a good diagnosis as soon as possible. In medical treatment, machine learning has been reported to be effective. A doctor can diagnose the disease early by using machine learning classifier algorithms. This study investigated the chronic disease prognosis of this concept. Disease data was taken from the University of California, Irvine. Other measurement algorithms used in this study include C5.0, Chi-square automatic interaction detector, line extraction, SVM line with L1 and L2 flap, and neural network random tree. The database was also submitted to a feature selection program that merited the database. Scores are computer generated for each category segment using the following methods: Full Version, (ii) Link-Based Feature Selection, (iii) Folder Feature Selection, (iv) Minimal Collapse and Selected Optional Retrospective Features, (v) integrated small oversampling method with very small reduction features and selected bias on the selected operator, and (vi) how to do multiple samples combined with full functions. In the full multi-sample processing process, the findings show that L2-loaded LSVM has a very high accuracy of 96.86 percent. The graph shows the results of different methods, as well as precision, precision, recall, F-score, area under the curve, and GINI coefficient. The minimum absolute reduction and selection regression operation selected features using the synthetic minority oversampling approach produced the best results after using the synthetic minority oversampling method with full features. The support vector machine achieved a high accuracy of 96.46 percent in the process of making very large samples with very small turndowns and selected operator features. Machine learning methods used with convolutional neural networks and SVM classifier models on the same database, with 96.7 percent of high-definition support machine models and networks are used.
Agro marketing is an application which is useful for both the farmers and customers. In present marketing system farmers are not getting profit for their hard work. In today marketing system the farming products are uploaded in the market by giving low cost to the farmers. Customers buy the products with high cost from market and also they are not healthy. In this Agro marketing application farmers upload their products that are cultivated in their own fields. Customers also login to the website and buy the products that they want to buy. As the farmers upload natural and fresh products, customers get healthy and fresh quality products that to directly from framers rather than a market. In this website the schemes and that are useful for the farmers are also uploaded by the admin which helps farmers financially.
Weather degradation such as haze, fog, mist, etc. severely reduces the effective range of visual surveillance. This degradation is a spatially varying phenomena, which makes this problem non trivial. Dehazing is an essential pre-processing stage in applications such as long-range imaging, border security, intelligent transportation system, etc. However, these applications require low latency of the pre-processing block. The proposed method can recover a high-quality haze-free image based on the physical model, and the complexity of the proposed method is only a linear function of the number of input image pixels. Experimental results demonstrate that the proposed method can allow a very fast implementation and achieve better restoration for visibility and color fidelity compared to some state-of-the-art methods
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.