In this paper, we employ a new kind of quasi-boson approach and the mean field theory to study analytically the Hamiltonian of an array of cavities with a three-level atom embedded in each cavity in the process of two-photon resonant transition under the influence of a bosonic bath. The superfluid order parameter of the system is obtained analytically and then analyzed numerically to investigate the effects of dissipation on the quantum phase transition from the superfluid to the Mott-insulator phase. It is shown that when the two-photon resonance is achieved one can have the superfluid phase at (ZJ/)= (ZJ/)c' 0.34 in the related ideal case. Furthermore, the system while in the two-photon resonant process has a larger dissipation rate as compared with that in the one-photon resonant process, thus leading to the suppression of the long-range coherence time and enhancement of the critical hopping rate for restoring coherence.
The sub-diffraction-limit spatially structured light patterns have attracted more and more attention for their important applications in many frontier scientific fields. The present paper aims at developing sub-diffraction-limit spatially structured beam patterns which might have great potential to improve the light performance in fields such as super resolution imagery, optical tweezer, micro/nano lithography, etc. Here, a variety of spatially structured beam patterns are obtained by the phase modulation of polarized beams and studied in detail experimentally and numerically. Firstly, a new kind of phase plate, which combines the merits of circular and vortex 2 phase plates, is proposed based on the wave front design; it is composed of two spiral-shaped phase plates with their phases changing from 0 to 2 and - to , respectively. Later, the phase plate is applied to the circularly polarized Gaussian beam modulation in a high NA system. By combining a self-made circular with a commercial vortex 2 phase plate, the designed new phase plate is implemented in the experiment. The morphology of the spatially structured light pattern, which is generated on the focal plane, is observed by a CCD camera in the experiment. The beam pattern presents a donut shape on the focal plane, while the dimension of the donut-shaped pattern becomes smaller as the imaging plane axially deviates from the focal plane. It is found that the beam patterns captured in experiment highly consist with the numerical simulation results carried out by the vectorial diffraction integral theory. It can be deduced that the spatially structured beam is capillary-shaped. Meanwhile, at the two ends of the capillary-shaped beam, the inner diameter is smaller than the diffraction limitation. Furthermore, the structured beam pattern presents a spatial voxel distribution with center and axis symmetry. Finally, the characteristics of the spatially structured beam patterns, which are generated by modulating circular, linear, radial and azimuthal polarized beams with the new designed phase plate, are analyzed and discussed in detail. It is found that for circular, linear, radial and azimuthal polarization, the full widths at half maximum (FWHMs) of the minimum dark spots in the horizontal direction are 0.31, 0.32, 0.24 and 0.36, respectively. On the optical axis, the FWHMs of the dark spots created by linearly, radially and azimuthally polarized light, are 0.8, 0.78 and 0.76 , respectively, and no axial intensity is found with circularly polarized beam incidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.