The load forecasting for an electrical system is the basis for expansion projections in generation, transmission and distribution sectors, and also for planning, operation and control. The errors minimization of load forecasting is brought with the reduction of costs and improvement of the general performance of the sectors involved, in such a way as to guarantee the quality of the services provided by the system, and to keep the operation safe and reliable. In this sense, the proposed study consists on carrying out the load forecasting of the Brazil's southern subsystem using three regression models (neutral, optimistic and pessimistic), evaluating the performance of each model considering their trend curve and deviations (maximum and minimum) compared with load data samples. In addition, the load forecasting will be performed from a Multi-Layer Perceptron (MLP) artificial neural network considering the same load data, in order to evaluate the accuracy of the model. Afterwards, the regression model which presents the best performance will be combined with the MLP, extending the forecasting the future load with a long-term horizon, based on the current conjuncture of the Brazilian electricity sector.Resumo: A previsão de carga para um sistema elétrico é a base para as projeções de expansão do setor de geração, transmissão e distribuição, assim como para as questões de planejamento, operação e controle. A minimização dos erros da previsão de carga traz consigo a redução de custos e melhoria de desempenho geral dos setores envolvidos, de tal forma a garantir a qualidade dos serviços prestados pelo sistema, e mantenimento da operação segura e confiável. Neste sentido, o estudo proposto consiste em realizar a previsão de carga do subsistema sul brasileiro, fazendo o uso de três modelos de regressão (neutro, otimista e pessimista), avaliando o desempenho dos modelos considerando a sua curva de tendência e seus desvios (máximo e mínimo) em comparação com amostras de dados de carga. Adicionalmente, será realizada a previsão de carga a partir de uma rede neural Multi-Layer Perceptron (MLP) considerando os mesmos dados de carga, avaliando a precisão do modelo. Após, será realizada a junção do modelo de regressão, que apresentar melhor desempenho, com a MLP, fazendo a previsão de carga futura com um horizonte de longo prazo, com base na conjuntura atual do setor elétrico brasileiro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.