The exploration of hybrid zones and the intergenomic conflicts exposed through hybridization provide windows into the processes of divergence and speciation. Sex chromosomes and mitonuclear incompatibilities have strong associations with the genetics of hybrid dysfunction. In ZW sex‐determining systems, maternal co‐inheritance of the mitochondrial and W chromosomes immediately exposes incompatibilities between these maternal contributions of one species and the Z chromosome of another. We analyze mitochondrial and Z chromosome admixture in the long‐tailed finch (Poephila acuticauda) of Australia, where hybridizing subspecies differ prominently in Z chromosome genotype and in bill color, yet the respective centers of geographic admixture for these two traits are offset by 350 km. We report two well‐defined mitochondrial clades that diverged ∼0.5 million years ago. Mitochondrial contact is geographically co‐located within a hybrid zone of Z chromosome admixture and is displaced from bill color admixture by nearly 400 km. Consistent with Haldane's rule expectations, hybrid zone females are significantly less likely than males to carry an admixed Z chromosome or have mismatched Z‐mitochondrial genotypes. Furthermore, there are significantly fewer than expected mitonuclear mismatches in hybrid zone females and paternal backcross males. Results suggest a potential for mitonuclear/sex chromosome incompatibilities in the emergence of reproductive isolation in this system.
The risk of fragility fracture increases for people with type 2 diabetes mellitus (T2DM), even after controlling for bone mineral density, body mass index, visual impairment, and falls. We hypothesize that progressive glycemic derangement alters microscale bone tissue composition. We used Fourier‐transform infrared (FTIR) imaging to analyze the composition of iliac crest biopsies from cohorts of postmenopausal women characterized by oral glucose tolerance testing: normal glucose tolerance (NGT; n = 35, age = 65 ± 7 years, HbA1c = 5.8 ± 0.3%), impaired glucose tolerance (IGT; n = 26, age = 64 ± 5 years, HbA1c = 6.0 ± 0.4%), and overt T2DM on insulin (n = 25, age = 64 ± 6 years, HbA1c = 9.13 ± 0.6). The distributions of cortical bone mineral content had greater mean values (+7%) and were narrower (−10%) in T2DM versus NGT groups (p < 0.05). The distributions of acid phosphate, an indicator of new mineral, were narrower in cortical T2DM versus NGT and IGT groups (−14% and −14%, respectively) and in trabecular NGT and IGT versus T2DM groups (−11% and −10%, respectively) (all p < 0.05). The distributions of crystallinity were wider in cortical NGT versus T2DM groups (+16%) and in trabecular NGT versus T2DM groups (+14%) (all p < 0.05). Additionally, bone turnover was lower in T2DM versus NGT groups (P1NP: −25%, CTx: −30%, ucOC: −24%). Serum pentosidine was similar across groups. The FTIR compositional and biochemical marker values of the IGT group typically fell between the NGT and T2DM group values, although the differences were not always statistically significant. In summary, worsening glycemic control was associated with greater mineral content and narrower distributions of acid phosphate, an indicator of new mineral, which together are consistent with observations of lower turnover; however, wider distributions of mineral crystallinity were also observed. A more mineralized, less heterogeneous tissue may affect tissue‐level mechanical properties and in turn degrade macroscale skeletal integrity. In conclusion, these data are the first evidence of progressive alteration of bone tissue composition with worsening glycemic control in humans. © 2020 American Society for Bone and Mineral Research (ASBMR).
Individuals with type 2 diabetes mellitus (T2DM) have an increased risk of fragility fracture despite exhibiting normal to high bone mineral density (BMD). Conditions arising from T2DM, such as reduced bone turnover and alterations in microarchitecture, may contribute to skeletal fragility by influencing bone morphology and microdamage accumulation. The objectives of this study were (i) to characterize the effect of T2DM on microdamage quantity and morphology in cancellous bone, and (ii) relate the accumulation of microdamage to the cancellous microarchitecture. Cancellous specimens from the femoral neck were collected during total hip arthroplasty (T2DM: n = 22, age = 65 ± 9 years, glycated hemoglobin [HbA1c] = 7.00% ± 0.98%; non‐diabetic [non‐DM]: n = 25, age = 61 ± 8 years, HbA1c = 5.50% ± 0.4%), compressed to 3% strain, stained with lead uranyl acetate to isolate microdamage, and scanned with micro–computed tomography (μCT). Individual trabeculae segmentation was used to isolate rod‐like and plate‐like trabeculae and their orientations with respect to the loading axis. The T2DM group trended toward a greater BV/TV (+27%, p = 0.07) and had a more plate‐like trabecular architecture (+8% BVplates, p = 0.046) versus non‐DM specimens. Rods were more damaged relative to their volume compared to plates in the non‐DM group (DVrods/BVrods versus DVplates/BVplates: +49%, p < 0.0001), but this difference was absent in T2DM specimens. Longitudinal rods were more damaged in the non‐DM group (DVlongitudinal rods/BVlongitudinal rods: +73% non‐DM versus T2DM, p = 0.027). Total damage accumulation (DV/BV) and morphology (DS/DV) did not differ in T2DM versus non‐DM specimens. These results provide evidence that cancellous microarchitecture does not explain fracture risk in T2DM, pointing to alterations in material matrix properties. In particular, cancellous bone from men with T2DM may have an attenuated ability to mitigate microdamage accumulation through sacrificial rods. © 2022 American Society for Bone and Mineral Research (ASBMR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.