Students' attendance in class is often mandatory in education and becomes a benchmark for assessing students. Sometimes there are still fraudulent practices by students to achieve minimum attendance. From the administrative perspective, a paper-based presence system is potentially wasteful and extends the administrative stage because it requires manual recapitulation. This study aims to design a class attendance application based on facial pattern recognition, smile, and closest Wi-Fi. The method used in this research is a deep learning approach with CNN based architecture, FaceNet, to recognize faces. In addition to facial images, the system will also validate the attendance with location and time data. Location data is obtained from matching SSID from the database, and time data is taken when the user sends attendance data through API. This attendance system consists of three applications: web, mobile, and services installed on a mini-computer, which are integrated to sending attendance data to the academic system automatically. As confirmation, students are required to smile selfies to strengthen the validity of their presence. The testing model's accuracy results are 92.6%, while for live testing accuracy the model obtained 66.7%.
Sejak kasus pertama di Indonesia diumumkan yaitu di awal tahun 2020, Covid-19 terus menyebar ke berbagai kota. Pandemi virus Covid-19 berdampak besar terhadap daya beli masyarakat dan jumlah transaksi penjualan di hampir semua komoditi, baik barang maupun jasa. Banyak pemilik usaha yang mengeluhkan turunnya target penjualan. Akan tetapi tidak semua sektor usaha mengalami penurunan, ada juga sektor usaha yang mengalami pertumbuhan cukup signifikan. Di masa pandemi ini semua orang melakukan usaha perlindungan diri agar terhindar dari penyebaran virus corona dengan rutin mengkonsumsi obat atau vitamin. Data konsumsi obat dapat dilihat pada data transaksi penjualan apotek. Data transaksi penjualan obat yang lebih dari 3 bulan pastilah tidak sedikit, sehingga dalam melakukan evaluasi terhadap data-data tersebut dibantu dengan algoritma data mining. Penelitian ini memanfaatkan algoritma Apriori untuk mengetahui pola pembelian konsumen pada Apotek Jingga di masa pandemi, proses pengolahan data dibagi dua yaitu asosiasi data sebelum pandemi, kemudian data di masa pandemi. Dari pola tersebut akan diketahui pola hubungan antar item produk, bahwa konsumen yang membeli obat X cenderung membeli obat Y. Hal ini akan mempermudah dalam proses perencanaan pengadaan obat, dan diharapkan dapat membantu manajemen untuk menganalisis setiap transaksi yang dilakukan oleh konsumen beserta kecenderungannya di masa pandemi. Hasil perbandingan berdasarkan tiga kali percobaan dengan parameter minimum support dan minimum confidence yang berbeda, jumlah aturan yang terbentuk selama pandemi lebih sedikit dibandingkan dengan aturan sebelum pandemi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.