Flowing gas in fluidized bed through selected inlet distributor may imparts a drag effect on the particles, would cause an increase in gas flow, that maybe sufficient to rearrange the particles movement. Thus, study on the airflow in a fluidization system through numerical analysis has been conducted to investigate the airflow distribution affected by new model distributor of twist blade distributor configuration. The present study would emphasis on computational procedure and parametric study via ANSYS Fluent before a detailed study on selected twist blade distributor are conducted. The selected parametric study on the twist blade distributor configuration whereby the twist blade angle (100°), horizontal inclination angle (15°), radial inclination angle (10°) and number of blades (60) was carried out. Therefore, the results of the studies that have been carried out meet the expected standards based on previous studies.
Spray drying is commonly used in the chemical and food industries and is the preferred drying process for many materials, such as dairy products, foods, pharmaceuticals, polymers, etc. This research focuses on the effect of the nozzle diameter in the spray drying region against velocity distribution. The results from previous studies have shown that CFD can be a useful tool for predicting the pattern of gas flow and particle histories such as temperature, velocity, time of residence and place of effect. The predictions from these model were validated against reported experimental results, and other simulations. From the simulation analysis, the present studies have identified the performance in the spray dryer through with different size of spray nozzle diameter as the parameter. For the nozzle diameter part, the smaller the spray nozzle diameter, the higher the velocity of the droplets with beneficial to the thermal efficiency of drying particles. The statements finding from the simulation of nine different case study with different nozzle diameter found that the higher velocity has been identified in simulation results due to incomplete vaporize droplets. The main impact of this study is to identify the most optimized condition of the spray dryer chamber after the analysis of the results of simulation data. In conclusion, the
This study examines the findings of numerical analysis studies that were conducted to determine how the arrangement of the blade distributors in a fluidization system affects the distribution of air flow distribution. In contrast to the conventional methods, which give the particle a swirling motion, the current fluidization systems produce a circular movement of a beds. Therefore, the influence of twist angle blade (60° and 100°) was investigated through to the horizontal inclination angle (15°) and radial inclination angle (10° and 12°) blade distributors. In a fluidization systems, the simulation was used to calculate and assess the performance outcomes of three velocity components: tangential velocity, axial velocity, and radial velocity. These components represent the flow of fluid inside the plenum fluidizations systems. According to the results of the numerical study that used a horizontal inclination of 15°, the velocity of the airflow in the fluidization systems may reach up to 8 m/s. This circumstance occurred because the air flow was quite near to the large opening area where the airflow was allowed to enter. This is due to the less of an interruption to the airflow when it enters the gap area between the two blades distributor.
Spray dryer comes at the end of the processing line since it is a critical step in monitoring the quality of the final product. It has certain advantages such as rapid drying rates, a wide range of operating temperatures and short residence times. This research focuses on the effect of inlet air temperature in the spray dryer chamber. The result from previous studies has shown that the increment of the inlet air temperature has caused the dying rate to increase. From the simulation, we have identified the performance in the spray dryer with different inlet air temperature as the parameter. The higher the inlet air temperature, the less the number of incomplete particles inside the spray dryer chamber, the more the success of the drying particles. The most optimized condition of inlet air temperature inside the spray dryer chamber from different parameters was identified as 225 K after the analysis on the results of simulation data. The main impact of this study is to increase the efficiency of drying particles inside the spray dryer chamber via computational fluid dynamics. In conclusion, researchers should concentrate more on the feed inlet air temperature of spray drying for future analysis because it plays an important role that can influence the impact on droplet conversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.