Over the long run, STEM fields had been perceived as dominant by males, despite that numerous studies have shown that female students do not underperform their male classmates in mathematics and science. In this review, we discuss whether and how sex/gender shows specificity in arithmetic processing using a cognitive neuroscience approach not only to capture contemporary differences in brain and behavior but also to provide exclusive brain bases knowledge that is unseen in behavioral outcomes alone. We begin by summarizing studies that had examined sex differences/similarities in behavioral performance of mathematical learning, with a specific focus on large‐scale meta‐analytical data. We then discuss how the magnetic resonance imaging (MRI) approach can contribute to understanding neural mechanisms underlying sex‐specific effects of mathematical learning by reviewing structural and functional data. Finally, we close this review by proposing potential research issues for further exploration of the sex effect using neuroimaging technology. Through the lens of advancement in the neuroimaging technique, we seek to provide insights into uncovering sex‐specific neural mechanisms of learning to inform and achieve genuine gender equality in education.
Numerous empirical studies have reported that males and females perform equally well in mathematical achievement. However, still to date, very limited is understood about the brain response profiles that are particularly characteristic of males and females when solving mathematical problems. The present study aimed to tackle this issue by manipulating arithmetic problem size to investigate functional significance using functional magnetic resonance imaging (fMRI) in young adults. Participants were instructed to complete two runs of simple calculation tasks with either large or small problem sizes. Behavioural results suggested that the performance did not differ between females and males. Neuroimaging data revealed that sex/gender‐related patterns of problem size effect were found in the brain regions that are conventionally associated with arithmetic, including the left middle frontal gyrus (MFG), left intraparietal sulcus (IPS) and insula. Specifically, females demonstrated substantial brain responses of problem size effect in these regions, whereas males showed marginal effects. Moreover, the machine learning method implemented over the brain signal levels within these regions demonstrated that sex/gender is discriminable. These results showed sex/gender effects in the activating patterns varying as a function of the distinct math problem size, even in a simple calculation task. Accordingly, our findings suggested that females and males use two complementary brain resources to achieve equally successful performance levels and highlight the pivotal role of neuroimaging facilities in uncovering neural mechanisms that may not be behaviourally salient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.