Designing effective diagnostics, biotherapeutics, and biocatalysts are a few interesting potential outcomes of protein engineering. Despite being just a few decades old, the discipline of de novo protein designing has provided a foundation for remarkable outcomes in the pharmaceuticals and enzyme industries. The technologies that will have the biggest impact on current protein therapeutics include engineered natural protein variants, Fc fusion protein, and antibody engineering. Furthermore, designing protein scaffolds can be used in developing next-generation antibodies and in transplanting active sites in the enzyme. The article highlights the important tools and techniques used in protein engineering and their application in the engineering of enzymes and therapeutic proteins. This review further sheds light on the engineering of superoxide dismutase, an enzyme responsible for catalyzing the conversion of superoxide radicals to oxygen and hydrogen peroxide by catalyzing a redox reaction at the metal center while concurrently oxidizing and reducing superoxide free radicals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.