Coating of the crystals by some component(s) of human urine might be an important physiological event in preventing adhesion or retention of crystals in the renal tubules. Although the mechanisms by which crystal adhesion is prevented are unknown, a low potential for inhibiting adhesion may be a risk factor in stone formation because it permits crystal adhesion and retention in the tubules.
Abstract.To confirm the usefulness of the radial flow type bioreactor (RFB) for a three-dimensional (3D) culture system, which provides a tissue architecture and molecular function mimicking the in vivo environment, molecular expression in the A431 human squamous carcinoma cell line during culture were analyzed under the physically different environments of 3D culture in the RFB, 2D culture in a monolayer as well as in nude mice. Time-dependent accumulation of autocrine transforming growth factor (TGF) ß1 was found in spent culture media obtained only from 3D cultured A431 cancer cells, which grew well with a stratified-sheet morphology. Cells in the RFB overexpressed matrix metalloproteinase 7 (MMP7) and showed an increased release of soluble 80-kDa fragments of E-cadherin into the media time-dependently, resulting in the reduction of E-cadherin protein at the cell surface without down-regulation of the mRNA. ß-Catenin and its nuclear partner, LEF1, were up-regulated and Wnt protein secretion was also accelerated. Additional up-regulation of the transcriptional factors, HMGA2 and down-stream Slug, was noted. TGFß1-dependent, MMP7-mediated up-regulation of ß-catenin/LEF1 signaling and TGFß1-activated HMGA2 pathways consequently converged with Slug overexpression, due to disassembly and further repression of E-cadherin expression, which was reproducible in the epithelial mesenchymal transition process without any manipulation. Other transcriptional factors, Notch/HEY1 and NF-κB, were also up-regulated in 3D-cultured cells. These signals recruited molecules related to extracellular matrix-cell remodeling and angiogenesis. Expression of several representative molecules in the 3D cultured cells was parallel with that in xenotransplanted A431 tumor tissues in nude mice. 3D culture of tumor cells in the RFB is a useful tool for cancer experimental biology and evaluation of cancer therapeutic-like systems in nude mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.