Different studies have suggested that during speech processing readers with dyslexia present atypical levels of neural entrainment as well as atypical functional hemispherical asymmetries in comparison with typical readers. In this study, we evaluated these differences in children and the variation with age before and after starting with formal reading instruction. Synchronized neural auditory processing activity was quantified based on auditory steady-state responses (ASSRs) from EEG recordings. The stimulation was modulated at syllabic and phonemic fluctuation rates present in speech. We measured the brain activation patterns and the hemispherical asymmetries in children at three age points (5, 7, and 9 years old). Despite the well-known heterogeneity during developmental stages, especially in children and in dyslexia, we could extract meaningful common oscillatory patterns. The analyses included (1) the estimations of source localization, (2) hemispherical preferences using a laterality index, measures of neural entrainment, (3) signal-to-noise ratios (SNRs), and (4) connectivity using phase coherence measures. In this longitudinal study, we confirmed that the existence of atypical levels of neural entrainment and connectivity already exists at pre-reading stages. Overall, these measures reflected a lower ability of the dyslectic brain to synchronize with syllabic rate stimulation. In addition, our findings reinforced the hypothesis of a later maturation of the processing of beta rhythms in dyslexia. This investigation emphasizes the importance of longitudinal studies in dyslexia, especially in children, where neural oscillatory patterns as well as differences between typical and atypical developing children can vary in the span of a year.
Different approaches have been used to extract auditory steady‐state responses (ASSRs) from electroencephalography (EEG) recordings, including region‐related electrode configurations (electrode level) and the manual placement of equivalent current dipoles (source level). Inherent limitations of these approaches are the assumption of the anatomical origin and the omission of activity generated by secondary sources. Data‐driven methods such as independent component analysis (ICA) seem to avoid these limitations but only to face new others such as the presence of ASSRs with similar properties in different components and the manual selection protocol to select and classify the most relevant components carrying ASSRs. We propose the novel approach of applying a spatial filter to these components in order to extract the most relevant information. We aimed to develop a method based on the reproducibility across trials that performs reliably in low‐signal‐to‐noise ratio (SNR) scenarios using denoising source separation (DSS). DSS combined with ICA successfully reduced the number of components and extracted the most relevant ASSR at 4, 10 and 20 Hz stimulation in group and individual level studies of EEG adolescent data. The anatomical brain location for these low stimulation frequencies showed results in cortical areas with relatively small dispersion. However, for 40 and 80 Hz, results with regard to the number of components and the anatomical origin were less clear. At all stimulation frequencies the outcome measures were consistent with literature, and the partial rejection of inter‐subject variability led to more accurate results and higher SNRs. These findings are promising for future applications in group comparison involving pathologies.
Different studies have suggested that language and developmental disorders such as dyslexia are associated with a disturbance of auditory entrainment and of the functional hemispheric asymmetries during speech processing. These disorders typically result from an issue in the phonological component of language that causes problems to represent and manipulate the phonological structure of words at the syllable and/or phoneme level. We used Auditory Steady-State Responses (ASSRs) in EEG recordings to investigate the brain activation and hemisphere asymmetry of theta, alpha, beta and low-gamma range oscillations in typical readers and readers with dyslexia. The aim was to analyse whether the group differences found in previous electrode level studies were caused by a different source activation pattern or conversely was an effect that could be found on the active brain sources. We could not find differences in the brain locations of the main active brain sources. However, we observed differences in the extracted waveforms. The group average of the first DSS component of all signal-to-noise ratios of ASSR at source level was higher than the group averages at the electrode level. These analyses included a lower alpha synchronisation in adolescents with dyslexia and the possibility of compensatory mechanisms in theta, beta and low-gamma frequency bands.The main brain auditory sources were located in cortical regions around the auditory cortex. Thus, the differences observed in auditory EEG experiments would, according to our findings, have their origin in the intrinsic oscillatory mechanisms of the brain cortical sources related to speech perception.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.