The Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) outbreak, also known as COVID-19, from the seafood market in Wuhan, China, has the world on its knees within a short time, impacting health infrastructure, economy, science, and most importantly human existence. On March 11, 2020, the World Health Organization (WHO) declared COVID-19 a pandemic. Since the first encounter with COVID-19, the medical fraternity has been exploring various ways to counter the disease and related complications. Attempts have also been made to prevent infection by developing vaccines to reduce the severity of the disease and mortality post-infection. However, even as the first peak of the epidemic (also known as the "first wave") has flattened, the second peak (second wave) has been even more detrimental, with a rapid rise leading to an unprecedented burden on healthcare infrastructure and resulting in high mortality.The second wave has been predicted to be triggered by a double mutant strain, which resulted in a higher incidence of pneumonia, faster progression of the disease, increased oxygen requirements, and higher mortality. In contrast to the current treatment options available, which include antivirals, antimalarial, and anti-inflammatory agents, MSC can be proved to be a better treatment modality for COVID-19. In this article, we focus on the role and use of mesenchymal stem cells (MSC) as a potential therapeutic measure to win the battle against the SARS-CoV-2 virus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.