This paper proposes an energy-aware multicast routing protocol (MRP) based on the optimization algorithm named iterative Crow Whale-Energy Trust routing (iterative CrowWhale-ETR). The CrowWhale-ETR is developed by including the historical terms from Taylor series in the CrowWhale optimization algorithm. Initially, the effective nodes for the multicast routing process are considered by measuring the trust and energy level of nodes. Based on the fitness factor, the protected nodes are selected relies on the trust and energy level of individual nodes. Once the secure nodes are selected, route detection and route selection is performed based on iterative CrowWhale-ETR. Finally, the route maintenance is done as per the remaining energy and trust factors of the nodes in the network. The comparative analysis of developed iterative CrowWhale-ETR is performed with the evaluation metrics, like energy, delay, throughput and detection rate using 50 and 100 nodes in the presence as well as absence of attacks.
Due to heterogenous shape of liver, the segmentation and classification of liver is challenging task. Therefore, Computer-Aided Diagnosis (CAD) is employed for predictive decision making for liver diagnosis. The major intuition of this paper is to detect liver cancer in a precise manner by automatic approach. The developed model initially collects the standard benchmark LiTS dataset, and image preprocessing is done by three techniques like Histogram equalization for contrast enhancement, and median filtering and Anisotropic diffusion filtering for noise removal. Further, the Adaptive thresholding is adopted to perform the liver segmentation. As a novelty, optimized Fuzzy centroid-based region growing model is proposed for tumor segmentation in liver. The main objective of thistumor segmentation model is to maximize the entropy by optimizing the fuzzy centroid and threshold of region growing using Mean Fitness-based Salp Swarm Optimization Algorithm (MF-SSA). From segmented tumor, the features like Local Directional Pattern (LDP) and Gray Level Co-occurrence Matrix (GLCM) are extracted. The extracted features are given as input to NN, and segmented tumor is given to Convolutional Neural Network (CNN). The AND bit operation to both of the outputs obtained from NN and CNN confirms the healthy and unhealthy CT images. Since the number of hidden neurons makes an effect on final classification output, the optimization of neurons is done using MF-SSA. From the experimental analysis, it is confirmed that the proposed model is better as compared with state of art results of previous study can assist radiologists in tumor diagnosis from CT scan images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.