Use of space-based spectral information with weather inputs for wheat yield modeling by empirical and crop simulation models is reviewed and extended with enhanced spectral modeling approach for districts in central Punjab. The study uses multi-date and multi-year MODIS data at 250m resolution to both identify wheat crop and develop temporal spectral Enhanced Vegetation Index (EVI) profile for 2001-2019 period. Recently developed high resolution (12km) gridded temperature data from NCMRWF, namely India Monsoon Data Assimilation and Analysis (IMDAA) has been used for computing district-level average of daily (AV) and night-time (NT) temperatures. Multiple linear regression analysis with statistical tests on significance of coefficients for various inputs is used to investigate significance of various input parameters in yield models on multi-district data set. Results identify both area under spectral profile (AS-EVI) and mean peak value (PK-EVI) have significant control on yield. Individual district-level trend based yield (YT) is a significant coefficient in the multi-district models. Model performance is significantly improved by the inclusion of phase-specific temperatures and at specific post-flowering phases the night temperature figured in best models. Significance of the results in development of spatially resolved yields for applications like yield forecast, crop insurance and climate change studies is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.