The interaction of extreme ultraviolet (XUV) photon with matter is a meaningful way to understand the electronic structure of microscopic particles. In this paper, the electron angular distributions of single ionization and double ionization of Ne and Xe atoms interacting with XUV photons are investigated by utilizing a reaction microscope. The asymmetric parameters of 2p electrons of Ne atoms, and 5p, 5s electrons of Xe atoms combined with the reported experimental data are compared with different theoretical models. The result shows that the electron correlation effect can be ignored in the ionization of 2p electron of Ne atoms. While the ionization of 5p electron of Xe atoms is strongly influenced by the electron correlation effect, but not affected by the relativistic effect. Both of these two effects play an important role in 5s shell ionization of Xe atom. In addition, this study also finds that direct double ionization and indirect double ionization exist simultaneously during the ionization of Xe and the photoelectron angular distributions and asymmetry parameters of the first and second steps in indirect double ionization are given.
In the past two decades,the development of laser technology has made attosecond science become a cutting-edge research field,providing various novel perspectives for the study of quantum few-body ultrafast evolution.The attosecond pulses prepared in the current laboratory are widely used in experimental research in the form of isolated pulses or pulse trains.The ultrafast changing light field allows people to control and track the motion of electrons at the atomic-scale,and realizes real-time tracking of electron dynamics on the sub-femtosecond time-scale.This review focuses on the progress in the study of ultrafast dynamics of atoms and molecules,which is an important part of attosecond science.Firstly,the generation and development of attosecond pulses are reviewed,mainly including the principle of high-order harmonic and the separation method of single-attosecond pulses.Then the applications of attosecond pulses are systematically introduced,including photo-ionization time delay,attosecond charge migration,non-adiabatic molecular dynamics and so on.Finally,the summary and outlook of the application of attosecond pulses are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.