DNA hypermethylation is a common epigenetic alteration in human prostate cancer and is considered to contribute to development of this disease. Accumulating data suggest that dietary factors may alter cancer risk by modifications of epigenetic processes in the cell. The present study was designed to investigate whether selenium (Se) would alter epigenetic events to regulate methylation-silenced genes in human prostate cancer cells. DNA methylation, histone modifications and gene expression were studied in LNCaP cells after selenite treatment using polymerase chain reaction, western blot analysis, chromatin immunoprecipitation assay and enzymatic activity assay. Our study shows that selenite treatment caused partial promoter DNA demethylation and reexpression of the pi-class glutathione-S-transferase (GSTP1) in LNCaP cells in a dose- and time-dependent manner. Selenite treatment decreased messenger RNA levels of DNA methyltransferases (DNMTs) 1 and 3A and protein levels of DNMT1. Selenite also decreased histone deacetylase activity and increased levels of acetylated lysine 9 on histone H3 (H3-Lys 9), but decreased levels of methylated H3-Lys 9. Selenite treatment reduced levels of DNMT1 and methylated H3-Lys 9 associated with the GSTP1 promoter, but increased levels of acetylated H3-Lys 9 associated with this promoter. Additionally, selenite treatment decreased general DNA methylation and caused partial promoter demethylation and reexpression of the tumor suppressor adenomatous polyposis coli and cellular stress response 1, a gene involving tumor growth and metastasis. Our study demonstrates that Se can epigenetically modulate DNA and histones to activate methylation-silenced genes. These epigenetic modifications may contribute to cancer prevention by Se.
Purpose-Studies have demonstrated that selenium supplementation reduces the incidence of cancer, particularly prostate cancer. Evidence from experimental studies suggests that apoptosis is a key event in cancer chemoprevention by selenium and reactive oxygen species play a role in induction of apoptosis by selenium compounds. The current study was designed to investigate the role of superoxide and mitochondria in selenite-induced apoptosis in human prostate cancer cells.Methods-LNCaP cells were transduced with adenoviral constructs to overexpress four primary antioxidant enzymes: manganese superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD), catalase (CAT), or glutathione peroxidase 1 (GPx1). Cell viability, apoptosis, and superoxide production induced by sodium selenite were analyzed by the MTT assay, chemiluminescence, flow cytometry, western blot analysis, and Hoechst 33342 staining following overexpression of these antioxidant enzymes.Results-Our study shows the following results: (1) selenite induced cancer cell death and apoptosis by producing superoxide radicals; (2) selenite-induced superoxide production, cell death, and apoptosis were inhibited by overexpression of MnSOD, but not by CuZnSOD, CAT, or GPx1; and (3) selenite treatment resulted in a decrease in mitochondrial membrane potential, release of cytochrome c into the cytosol, and activation of caspases 9 and 3, events that were suppressed by overexpression of MnSOD.Conclusions-This study demonstrates that selenite induces cell death and apoptosis by production of superoxide in mitochondria and activation of the mitochondrial apoptotic pathway and MnSOD plays an important role in protection against prooxidant effects of superoxide from selenite. The data suggest that superoxide production in mitochondria is, at least in part, a key event in selenium-induced apoptosis in prostate cancer cells.
Although the anticancer effects of selenium have been shown in clinical, preclinical, and laboratory studies, the underlying mechanism(s) remains unclear. Our previous study showed that sodium selenite induced LNCaP human prostate cancer cell apoptosis in association with production of reactive oxygen species, alteration of cell redox state, and mitochondrial damage. In the present study, we showed that selenite-induced apoptosis was superoxide mediated and p53 dependent via mitochondrial pathways. In addition, we also showed that superoxide production by selenite was p53 dependent. Our study showed that wild-type p53-expressing LNCaP cells were more sensitive to selenite-induced apoptosis than p53-null PC3 cells. Selenite treatment resulted in high levels of superoxide production in LNCaP cells but only low levels in PC3 cells. LNCaP cells also showed sequential increases in levels of phosphorylated p53 (serine 15), total p53, Bax, and p21Waf1 proteins following selenite treatment. The effects of selenite were suppressed by pretreatment with a synthetic superoxide dismutase mimic or by knockdown of p53 via RNA interference. LNCaP cells treated with selenite also showed p53 translocation to mitochondria, cytochrome c release into the cytosol, and activation of caspase-9. On the other hand, restoration of wild-type p53 expression in PC3 cells increased cellular sensitivity to selenite and resulted in increased superoxide production, caspase-9 activation, and apoptosis following selenite treatment. These results suggest that selenite induces apoptosis by producing superoxide to activate p53 and to induce p53 mitochondrial translocation. Activation of p53 in turn synergistically enhances superoxide production and apoptosis induced by selenite. (Cancer Res 2006; 66(4): 2296-304)
Combination of chemopreventive agents with distinct molecular mechanisms is considered to offer a potential for enhancing cancer prevention efficacy while minimizing toxicity. Here we report two chemopreventive agents, selenite and genistein, that have synergistic effects on apoptosis, cell cycle arrest, and associated signaling pathways in p53-expressing LNCaP and p53-null PC3 prostate cancer cells. We show that selenite induced apoptosis only, whereas genistein induced both apoptosis and G 2 /M cell cycle arrest. Combination of these two agents exhibited enhanced effects, which were slightly greater in LNCaP than PC3 cells. Selenite or genistein alone upregulated protein levels of p53 in LNCaP cells only and p21 waf1 and Bax in both cell lines. Additionally, genistein inhibited AKT phosphorylation. Downregulation of AKT by siRNA caused apoptosis and G 2 /M cell cycle arrest and masked the effects of genistein. Treatment with insulin-like growth factor I (IGF-I) elevated levels of total and phosphorylated AKT and suppressed the effects of genistein. Neither downregulation of AKT nor IGF-I treatment altered the cellular effects of selenite. Our study demonstrates that selenium and genistein act via different molecular mechanisms and exhibit enhanced anticancer effects, suggesting that a combination of selenium and genistein may offer better efficacy and reduction of toxicity in prostate cancer prevention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.