Structure plays a vital role in determining materials properties. In lithium ion cathode materials, the crystal structure defines the dimensionality and connectivity of interstitial sites, thus determining lithium ion diffusion kinetics. In most conventional cathode materials that are well-ordered, the average structure as seen in diffraction dictates the lithium ion diffusion pathways. Here, we show that this is not the case in a class of recently discovered high-capacity lithium-excess rocksalts. An average structure picture is no longer satisfactory to understand the performance of such disordered materials. Cation short-range order, hidden in diffraction, is not only ubiquitous in these long-range disordered materials, but fully controls the local and macroscopic environments for lithium ion transport. Our discovery identifies a crucial property that has previously been overlooked and provides guidelines for designing and engineering cation-disordered cathode materials.
The atomic environments at metal surfaces differ strongly from the bulk, and, in particular, in case of reconstructions or imperfections at "real surfaces," very complicated atomic configurations can be present. This structural complexity poses a significant challenge for the development of accurate interatomic potentials suitable for large-scale molecular dynamics simulations. In recent years, artificial neural networks (NN) have become a promising new method for the construction of potential-energy surfaces for difficult systems. In the present work, we explore the applicability of such high-dimensional NN potentials to metal surfaces using copper as a benchmark system. A detailed analysis of the properties of bulk copper and of a wide range of surface structures shows that NN potentials can provide results of almost density functional theory (DFT) quality at a small fraction of the computational costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.