Cation modified hydrochars were synthesized by hydrothermal carbonization (HTC) of sugarcane bagasse, followed by impregnation of three different cations (Ca, Mg, and Fe) or co-precipitation of Fe3+ and Fe2+. HTC enhanced the hydrochar surface area and increased the enrichment of oxygen functional groups on the hydrochar surface confirmed by FTIR. The oxygen functional groups further improve the adsorption capacity for cations during hydrochar chemical modification. Physical appearance, FTIR and XRF confirmed that Ca2+, Mg2+ and Fe2+ or Fe3+ were well retained in the bagasse-derived hydrochar. The pHpzc values of all chemically modified hydrochars were greater than the unmodified hydrochar or bagasse alone. Modification with different cations improved phosphate uptake capacity. The Fe-modified hydrochar with about 45-50% Fe content showed greater phosphate removal efficiency than Ca- and Mg-modified hydrochars. In addition, hydrochars decorated by impregnation of Fe3+ demonstrated better phosphate removal than ones produced by co-precipitation of Fe3+ and Fe2+. Thus, chemically modified hydrochars could be used as an environmentally alternative adsorbent for phosphate removal from aqueous solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.