Mayoritas petani di Jawa Tengah, khususnya Sragen, menanam padi. Namun banyak kendala yang mereka hadapi, terutama masalah penyakit yang menyerang tanaman padi. 5 jenis penyakit padi yang sering dijumpai, yaitu bercak daun, blas, hawar daun, pelepah flare, dan tungro. Kurangnya pemahaman menyebabkan kesalahan dalam penanganan, dapat menyebabkan kerugian. Tujuan penelitian ini adalah untuk meningkatkan akurasi dalam mengidentifikasi penyakit tanaman padi yang terkena penyaki. Mengidentifikasi jenis penyakit pada tanaman padi dengan menggabungkan karakteristik bentuk dan karakteristik tekstur menjadi penting untuk meningkatkan hasil akurasi. Metode yang digunakan mempengaruhi keakuratan masing-masing pola dalam citra tanaman padi. Data yang digunakan adalah 70 data latih dan 30 data uji dengan ukuran 256 x 256 pikse.. Kombinasi karakteristik bentuk dan tekstur digunakan untuk mengoptimalkan akurasi. Untuk mendapatkan karakteristik proses segmentasi menggunakan Otsu dan Morfologi. Hasilnya diproses untuk mendapatkan karakteristik bentuk menggunakan luas dan perimeter, dan karakteristik entropi, energi, homogenitas, korelasi, dan tekstur kontras, masing-masing dari 4 sudut GLCM, sehingga fitur yang digunakan adalah 22 fitur. Sistem ini menggunakan metode backpropagation untuk mengklasifikasikan jenis penyakit. Hasil yang diperoleh dari 70 data pelatihan adalah akurasi 100% dan 30 data uji dengan tingkat akurasi 93%.
One of the factors causing rice production depression is a typical disease in rice plants. Typical of disease in rice plants, among others, such Blast Disease, Leaf Blight Disease, Disease Hawar On Stem, Crackle Disease and so on. Each type of disease requires different treatment, but not all farmers know the type of disease so as to allow for errors in the handling. This research made an application program that can identify rice pests to facilitate farmers solve the problems of rice plants disease since it becomes important to make a disease classification system on the leaves of rice plants. This research uses backpropagation method to classify the type of disease resulting from feature extraction of GLCM with 4 angles. Results obtained 80% accuracy from 30 data, with 16 seconds testing time.
Penggunaan ciri yang tepat untuk menentukan identifikasi sangat penting untuk hasil akurasi, khususnya citra batik tradisional Solo. Ciri disebut baik jika memiliki kemampuan pembeda sehingga dapat digunakan untuk pengenalan dengan tingkat akurasi yang tinggi. Tujuan dari penelitian ini untuk mengetahui ciri apa saja dari ciri tekstur yang berpengaruh pada tingkat akurasi pada identifikasi citra batik tradisional Solo. Metode yang digunakan KFold cross validation, dengan nilai K sebesar 2, 3, 5, 6, 10 digunakan untuk menguji data latih dan data validasi. Parameter terbaik dipilih dari nilai akurasi tertinggi, dan selanjutnya disimpan bobot akhir, nilai α, dec α dan min α terbaik. Nilai-nilai yang dihasilkan yang digunakan dalam pengujian data uji. Ciri tekstur yang diuji adalah energi 0 o , energi 45 o , energi 90 o , energi 135 o , entropi 0 o , entropi 45 o , entropi 90 o , entropi 135 o , kontras 0 o , kontras 45 o , kontras 90 o , kontras 135 o , homogeniti 0 o , homogeniti 45 o , homogeniti 90 o , homogeniti 135 o , korelasi 0 o , korelasi 45 o , korelasi 90 o , korelasi 135 o. Hasil pengujian diperoleh dari K= 2, 3, 5, 6, 10 nilai akurasi tertinggi diperoleh pada 10-fold dengan hasil akurasi sebesar 80,2%. Hasil pengujian menggunakan k-fold dapat diambil kesimpulan penggunaan ciri tekstur dapat berpengaruh meningkatkan hasil akurasi sebesar 18,89%.
The impact of the Covid-19 pandemic on largescale social restrictions forced the economic activities of the Indonesian population to cease, which had an impact on the educational funding process. This makes some people expect a helping hand from the government to cover some of the shortcomings in daily spending, one of them through the Indonesia Smart Card. The provision of aid funds in these conditions must make the process of channeling aid on target. With this problem, it is important to develop a Decision Making System to help the KIP acceptance selection process for students who are indeed eligible to get it. The purpose of this study is that the provision of KIP can be right on target for students who really need it according to specified criteria. For decision making, three stages are used with the method used, the first stage the C-45 method is used for decision making whether students graduate or not, the second stage is the Fuzzy MADM method used for decision making of students who get KIP, and the third stage ranks according to specified total quota. Initial selection uses the C-45 method with variable GPA (V1), distance from home to campus (V2), length of study (V3), work (V4), family (V5), and tuition payment bills (V6). The calculation yields 5 rules which are used to determine normal (graduated) or DO (not) students. Students who pass the initial selection are processed using the MADM fuzzy method for the decision-making process that is truly feasible for KIP. Furthermore, the number that passes is ranked and the amount is taken based on the quota in accordance with the results of the ranking. Of the 456 student data received based on 1024 registrants after ranking, 300 students were drawn based on KIP target recipients. The results of testing the accuracy of 300 KIP recipients who obtained data actually had 284 rights. In order to obtain an accuracy of 98% of students who are eligible for KIP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.