The preparation of two-component polymer composite nanoparticles encapsulating both Si quantum dots (SiQDs) and Au nanoparticles (AuNPs) by a single step miniemulsion polymerization of divinylbenzene is described. This simple and robust method affords well-defined polymer composite nanoparticles with mean diameters in a range of 100-200 nm and with narrow polydispersity indices as determined by dynamic light scattering and transmission electron microscopy. The successful encapsulation of AuNPs within poly(divinylbenzene) was confirmed by UV-visible spectroscopy and from TEM images. Plasmon-enhanced fluorescence of the luminescence of the SiQDs by AuNPs encapsulated within the polymer composite nanoparticles was evaluated by confocal microspectroscopy, and luminescence enhancements of up to 15 times were observed. These observations indicate that the luminescence of the SiQDs is enhanced by the proximity of the AuNPs. The polymer composite nanoparticles were successfully ink-jet printed onto a glass substrate, which demonstrates that these composites are processable in printing applications.
Antibiotics are regarded as a miracle in the medical field as it prevents disease caused by pathogenic bacteria. Since the discovery of penicillin, antibiotics have become the foundation for modern medical discoveries. However, bacteria soon became resistant to antibiotics, which puts a burden on the healthcare system. Methicillin-resistant Staphylococcus aureus (MRSA) has become one of the most prominent antibiotic-resistant bacteria in the world since 1961. MRSA primarily developed resistance to beta-lactamases antibiotics and can be easily spread in the healthcare system. Thus, alternatives to combat MRSA are urgently required. Antimicrobial peptides (AMPs), an innate host immune agent and silver nanoparticles (AgNPs), are gaining interest as alternative treatments against MRSA. Both agents have broad-spectrum properties which are suitable candidates for controlling MRSA. Although both agents can exhibit antimicrobial effects independently, the combination of both can be synergistic and complementary to each other to exhibit stronger antimicrobial activity. The combination of AMPs and AgNPs also reduces their own weaknesses as their own, which can be developed as a potential agent to combat antibiotic resistance especially towards MRSA. Thus, this review aims to discuss the potential of antimicrobial peptides and silver nanoparticles towards controlling MRSA pathogen growth.
Miniemulsion polymerization techniques were used to encapsulate luminescent alkylated silicon quantum dots (Si-QDs) within polymer nanoparticles composed of styrene and 4-vinylbenzaldehyde monomers. The polymer nanoparticles had mean diameters in the range 90-150 nm depending on the reaction conditions, however all samples showed narrow particle size distributions, as determined by dynamic light scattering and atomic force microscopy. The Si-QDs were found to have a small, but beneficial effect on the polymerization process by reducing the polydispersity of the final polymer particles, which we attribute to co-surfactant action of the undecene used to form the alkyl capping layer on the Si-QDs. Confocal microspectroscopy was used to confirm that the luminescent alkylated Si-QDs were encapsulated within the polymer nanoparticles and also provided luminescence and Raman spectra which show peaks corresponding to both alkylated Si-QDs and the polymer nanoparticles. Treatment of the polymer nanoparticles with dilute aqueous sodium hydroxide solution, which is known to corrode Si and extinguish the luminescence of alkylated Si-QDs, results in only a partial reduction in luminescence suggesting that the majority of the alkylated Si-QDs are encapsulated sufficiently deep within the polymer matrix to protect them from alkaline attack. Miniemulsion polymerization of the monomers styrene and 4-vinylbenzaldehyde affords polymer nanoparticles displaying reactive aldehyde groups upon their surfaces, which could then be decorated with a selection of molecules through imine, oxime or hydrazone condensation reactions. We speculate that polymer-SiQD composite nanoparticles whose surfaces can be further decorated will increase the utility of luminescent Si-QDs in applications such as anti-counterfeiting and as probes of biological processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.