a b s t r a c tPoly(3-hydroxybutyrate) [P(3HB)] homopolymer and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] copolymer was produced by Comamonas sp. EB172 using single and mixture of carbon sources. Poly(3-hydroxyvalerate) P(3HV) incorporation in the copolymer was obtained when propionic and valeric acid was used as precursors. Incorporation of 3HV fractions in the copolymer varied from 45 to 86 mol% when initial pH of the medium was regulated. In fed-batch cultivation, organic acids derived from anaerobically treated palm oil mill effluent (POME) were shown to be suitable carbon sources for polyhydroxyalkanoate (PHA) production by Comamonas sp. EB172. Number average molecular weight (M n ) produced by the strain was in the range of 153e412 kDa with polydispersity index (M w /M n ) in the range of 2.2e2.6, respectively. Incorporation of higher 3HV units improved the thermal stability of P (3HB-co-3HV) copolymer. Thus the newly isolated bacterium Comamonas sp. EB172 is a suitable candidate for PHA production using POME as renewable and alternative cheap raw materials.Crown
Aims: Statistical approach, central composite design (CCD) was used to investigate the complex interaction among temperature (25-37 °C), initial medium pH (5-9), inoculum size (4-10 % (v/v)), concentration of (NH4)2SO4 (0-1 g/L) and concentration of mixed organic acids (5-10 g/L) in the production of polyhydroxyalkanoates by Comamonas sp. EB172. Methodology and Results: Mixed organic acids derived from anaerobically treated palm oil mill effluent (POME) containing acetic:propionic:butyric (ratio of 3:1:1) were used as carbon source in the batch culture of Comamonas sp. EB172 to produce polyhydoxyalkanoates (PHAs). The analysis of variance (ANOVA) showed that all five factors were significantly important in the batch fermentation by shake flask with a P value of less than 0.001. The optimal temperature, initial medium pH, inoculum size, concentration of (NH4)2SO4 and concentration of mixed organic acids were 30 °C, 7.04, 4.0 % (v/v), 0.01 g/L and 5.05 g/L respectively. Conclusion, significance and impact of study: Optimization of the production medium containing mixed organic acids has improved the PHA production for more than 2 folds. Under optimal condition in the shake flask fermentation, the predicted growth is 2.98 g/L of dry cell weight (DCW) with 47.07 wt % of PHA content. The highest yield of PHA was 0.28 g of PHA per g mixed organic acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.