Purpose Despite the practice of credit card services by Islamic financial institutions (IFIs) is debatable, Islamic banks (IBs) have been offering this product. Both Muslim and non-Muslim customers have subscribed to the products. Thus, it is critical to analyse the strategy of IBs’ moral messages in reminding their Muslim and non-Muslim customers to repay their credit card debts. This paper aims to investigate this issue in Indonesia using data mining via machine learning. Design/methodology/approach This study examines the IBs’ customers across the 32 provinces of Indonesia regarding their moral status in credit card debt repayment. This work considers 6,979 observations of the variables that affect the moral status of the IBs’ customers in repaying their debt. The five types of data mining via machine learning (i.e. Boruta, logistic regression, Bayesian regression, random forest, XGBoost and spatial cluster) are used. Boruta, random forest and XGBoost are used to select the important features to investigate the moral aspects. Bayesian regression is used to get the odds and opportunity for the transition of each variable and spatially formed based on the information from the logistical intercepts. The best method is selected based on the highest accuracy value to deliver the information on the relationship between moral status categories in the selected 32 provinces in Indonesia. Findings A different variable on moral status in each province is found. The XGBoost finds an accuracy value of 93.42%, which the three provincial groups have the same information based on the importance of the variables. The strategy of IBs’ moral messages by sending the verse of al-Qur’an and al-Hadith (traditions or sayings of the Prophet Muhammad PBUH) and simple messages reminders do not impact the customers’ repaying their debts. Both Muslim and non-Muslim groups are primarily found in the non-moral group. Research limitations/implications This study does not consider socio-economic demographics and culture. This limitation calls future works to consider such factors when conducting a similar topic. Practical implications The industry professionals can take benefit from this study to understand the Indonesian customers’ moral status in repaying credit card debt. In addition, future works may advance the recent findings by considering socio-cultural factors to investigate the moral status approach to Islamic credit warnings that is not covered by this study. Social implications This work finds that religious text of credit card repayment reminders sent to Muslims in several provinces of Indonesia does not affect their decision to repay their debts. To some extent, this finding draws a social issue that the local IBs need to consider when implementing the strategy of credit card repayment reminders. Originality/value This study credits a novelty in the discourse of data science for Islamic finance practices. Specifically, this study pioneers an example of using data mining to investigate Islamic-moral incentives in credit card debt repayment.
Design: At the heart of time series forecasting, if nonlinear and nonstationary data are analyzed using traditional time series, the results will be biased. At the same time, if just using machine learning without any consideration given to input from traditional time series, not much information can be obtained from the results because the machine learning model is a black box. Purpose: In order to better study time series forecasting, we extend the combination of traditional time series and machine learning and propose a hybrid cascade neural network considering a metaheuristic optimization genetic algorithm in space–time forecasting. Finding: To further show the utility of the cascade neural network genetic algorithm, we use various scenarios for training and testing while also extending simulations by considering the activation functions SoftMax, radbas, logsig, and tribas on space–time forecasting of pollution data. During the simulation, we perform numerical metric evaluations using the root-mean-square error (RMSE), mean absolute error (MAE), and symmetric mean absolute percentage error (sMAPE) to demonstrate that our models provide high accuracy and speed up time-lapse computing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.