Satellite-based rainfall estimation is evolving rapidly. Most studies use data, which is spatially fine, but poorly regarding time. On the other hand, availability of verification data is also quite rare. This study used Hillman Form B report that was corrected by ME-48 from Malang Climatological Station. 2009-2016 IR1 satellite data were used in hourly temporal resolution (only less than 3% data missing). Four estimation methods were compared: Auto Estimator, CST, mCST, and Quantile Analysis Equation. Data processing was carried out using Python and R statistic as a quality control. The analysis was done by creating a graph that combines False Alarm and Miss Information for each rainfall intensity. Binary transformation was done for enabling information to be plotted. All rainfall estimation methods have a high false alarm (more than 74% at 1 mm) but quite low miss (less than 0.03%). By taking into account its error pattern, satellite data can be used in rainfall observation. The Quantile equation is slightly superior to other methods. This study is relatively inexpensive to be duplicated so it can be used as an evaluation tool for rainfall estimation best practice for Meteorological and Climatological Agency’s network.
Prakiraan cuaca sangat penting untuk mendukung segala kegiatan aktivitas masyarakat. Untuk menghasilkan prakiraan cuaca yang akurat dibutuhkan pengetahuan dan pengalaman dari prakirawan cuaca yang didukung dengan teknologi pemodelan cuaca. Pada penelitian ini, dilakukan sebuah pemodelan curah hujan menggunakan artificial neural network (ANN) di Stasiun Meteorologi Kemayoran. Pada proses pembuatan model ANN, dibutuhkan pelatihan data menggunakan kondisi cuaca di masa lalu. Data yang digunakan untuk pelatihan dalam membuat model ANN adalah data cuaca harian periode Januari 2011 s.d. Desember 2019 yang selanjutnya diuji dengan menggunakan studi kasus selama periode Januari s.d. Agustus 2020. Variasi model dibuat berdasarkan jenis input dan jumlah hidden layer untuk mengetahui perbedaan penggunaan data prediktor yang digunakan. Kemudian model ANN dibuat dengan menggunakan pendekatan 3 – lapisan yang terdiri dari lapisan input, lapisan tersembunyi, dan lapisan output. Selanjutnya perbandingan model tersebut diuji menggunakan nilai koefisien korelasi (R) dan rata – rata kesalahan absolut (MAE) untuk mengetahui model yang terbaik. Berdasarkan hasil penelitian, prediksi hujan menggunakan data parameter input kondisi cuaca harian berupa suhu udara, kelembaban udara, dan durasi penyinaran matahari memiliki nilai koefisien korelasi (R) sebesar 0.4 – 0.5 dan rata – rata kesalahan absolut (MAE) sebesar 9.7 – 9.8 mm. Sedangkan jika model dibuat dengan parameter input hujan di hari – hari sebelumnya, nilai koefisien korelasi (R) hanya 0.1 – 0.3 dengan nilai rata – rata kesalahan absolut (MAE) sebesar 11.3 – 12.3 mm. Kondisi tersebut menunjukkan bahwa prediktor yang lebih baik digunakan dalam memprediksi hujan harian berdasarkan artificial neural network adalah dengan menggunakan parameter input kondisi cuaca permukaan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.