The problem of an unsteady 3D boundary layer flow induced by a stretching sheet in a rotating hybrid nanofluid is studied. A dimensionless set of variables is employed to transform the system of partial differential equations (PDEs) to a set of nonlinear ordinary differential equations (ODEs). Then, the system of ODEs is solved numerically using the MATLAB software. The impacts of different parameters, such as copper nanoparticles volume fraction, radiation, rotation, unsteadiness, and stretching parameters are graphically displayed. It is found that two solutions exist for the flow induced by the stretching sheet. Furthermore, the increasing nanoparticle volume fraction enhances the skin friction coefficient. It is noticed that the skin friction coefficient, as well as the heat transfer rate at the surface, decrease as the rotating parameter increases. Additionally, the thermal radiation as well as the unsteadiness parameter stimulate the temperature.
This study investigates the magnetohydrodynamics of a micropolar fluid consisting of a hybrid nanofluid with mixed convection effects. By using the dimensionless set of variables, the resulting equations of ordinary differential equations are solved numerically using the bvp4c solver in MATLAB. In the present work, the water-based alumina–copper hybrid nanofluid is analytically modeled with modified thermophysical properties. The study reveals that the highest critical value of opposing flow is the hybrid nanofluid (ϕ1 = ϕ2 = 2%). By comparing the hybrid nanofluid with Cu–water nanofluid (ϕ1= 0%, ϕ2= 1%) as well as water (ϕ1= 0%, ϕ2= 0%), hybrid nanoparticle volume fraction enhances the dynamic viscosity performance and surface shear stress. In addition, the augmentation of the nanoparticle volume fraction and magnetic field parameter will increase the physical quantities Rex1/2 Cf, Rex Mx, and Rex−1/2 Nux. The result from the stability inquiry discloses that the first solution is more physically stable and trustworthy. It is proven that magnetohydrodynamics could contribute to controlling the fluid flow in a system, i.e., engineering operations and the medical field. In addition, this theoretical research can be a benchmark for experimental research.
Hybrid nanofluids may exhibit higher thermal conductivity, chemical stability, mechanical resistance and physical strength compared to regular nanofluids. Our aim in this study is to investigate the flow of a water-based alumina-copper hybrid nanofluid in an inclined cylinder with the impact of buoyancy force and a magnetic field. The governing partial differential equations (PDEs) are transformed into a set of similarity ordinary differential equations (ODEs) using a dimensionless set of variables, and then solved numerically using the bvp4c package from MATLAB software. Two solutions exist for both buoyancy opposing (λ < 0) and assisting (λ > 0) flows, whereas a unique solution is found when the buoyancy force is absent (λ = 0). In addition, the impacts of the dimensionless parameters, such as curvature parameter, volume fraction of nanoparticles, inclination angle, mixed convention parameter, and magnetic parameter are analyzed. The results of this study compare well with previously published results. Compared to pure base fluid and regular nanofluid, hybrid nanofluid reduces drag and transfers heat more efficiently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.