Statistical-based study using response surface methodology (RSM) was conducted to study the effects of process parameters towards biomass hydrogenation. Using Malaysian oil palm empty fruit bunches (EFB) fibres as feedstock, the central composite design (CCD) technique was employed and 18 runs were generated by CCD when four parameters (mass ratio of binary catalyst, hydrogen pressure, temperature and mass ratio of catalyst to feedstock) were varied with two center points to determine the effects of process parameters and eventually to get optimum ethylene glycol (EG) yield. RSM with quadratic function was generated for biomass hydrogenation, indicating all factors except temperature, were important in determining EG yield. Analysis of variance (ANOVA) showed a high coefficient of determination (R2) value of >0.98, ensuring a satisfactory prediction of the quadratic model with experimental data. The quadratic model suggested the optimum EG yield should be >25 wt.% and the EG yield results were successfully reproduced in the laboratory.
Oxidative desulfurisation is a method of removing sulfur from diesel fuel that has the potential to compete with conventional hydrodesulfurisation processes in refineries.Ultrasound has been shown to greatly increase peroxide oxidation rates of sulfur compounds and can thereby enhance the technology. Through the use of conceptual design modelling, this article critically assesses a range of novel process options. Calculations show that the rate enhancement achieved by ultrasound can translate into reduced process complexity and costs.By modelling various process options, the separation stage of the process is optimised to reveal that a solid adsorbent combined with a combustion regeneration method is the most economically viable. Although the process is limited to feeds with low sulfur content, it is competitive with conventional hydrotreater technology and superior to upgrading an ageing facility.
The chloride content for the newly developed surfactant is critical to ensure reaction completion and to minimize irritation issues that may be associated with having high chloride content. There are several methods used to determine the chloride content such as UV-visible and ion chromatography; however, both are known to have low accuracy and are less precise. Considering other factors such as skill, expertise, cost and time required, titration is the most suitable method for chloride determination because it is a simple, fast and relatively cheap method as compared to other methods. However, the precision achieved by manual titration is very much dependent on the operator's skill and ability to detect the color change accurately. To increase the precision and accuracy of the results generated, an auto-titrator that employs potentiometric sensors to determine the endpoint has been used to determine the chloride content. An improved method to determine the presence of chloride in surfactant solution is hereby illustrated, in which a commercial surfactant has been analyzed using the auto-titrator. A commercial surfactant known as Cola Teric CBS with a sodium chloride content of 5.7% as stated in the Certificate of Assurance (COA) was analyzed using this method. Fifteen replicate titrations of the sample giving the average chloride content of 3.5%. The precision for both method and system was found to be 0.28% and 2.22% respectively, which is within the acceptable limit. The good precision achieved by this method concludes the intention of the work to develop a method that ensures the endpoint can be determined accurately with better reproducibility, reduced titrant, sample and not operator dependent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.