Fish is a good source of nutrients, although it is easily spoiled. As such, drying is a common method of preserving fish to compensate for its perishability. Dried fish exists in different cultures with varying types of fish used and drying methods. These delicacies are not only consumed for their convenience and for their health benefits, as discussed in this review. Most commonly, salt and spices are added to dried fish to enhance the flavours and to decrease the water activity (aw) of the fish, which further aids the drying process. For fish to be dried effectively, the temperature, drying environment, and time need to be considered along with the butchering method used on the raw fish prior to drying. Considering the various contributing factors, several physicochemical and biochemical changes will certainly occur in the fish. In this review, the pH, water activity (aw), lipid oxidation, and colour changes in fish drying are discussed as well as the proximate composition of dried fish. With these characteristic changes in dried fish, the sensory, microbial and safety aspects of dried fish are also affected, revolving around the preferences of consumers and their health concerns, especially based on how drying is efficient in eliminating/reducing harmful microbes from the fish. Interestingly, several studies have focused on upscaling the efficiency of dried fish production to generate a safer line of dried fish products with less effort and time. An exploratory approach of the published literature was conducted to achieve the purpose of this review. This evaluation gathers important information from all available library databases from 1990 to 2022. In general, this review will benefit the fishery and food industry by enabling them to enhance the efficiency and safety of fish drying, hence minimising food waste without compromising the quality and nutritional values of dried fish.
Preserving fresh food, such as meat, is significant in the effort of combating global food scarcity. Meat drying is a common way of preserving meat with a rich history in many cultures around the globe. In modern days, dried meat has become a well enjoyed food product in the market because of its long shelf-life, taste and health benefits. This review aims to compile information on how the types of meat, ingredients and the used drying technologies influence the characteristics of dried meat in physicochemical, microbial, biochemical and safety features along with technological future prospects in the dried meat industry. The quality of dried meat can be influenced by a variety of factors, including its production conditions and the major biochemical changes that occur throughout the drying process, which are also discussed in this review. Additionally, the sensory attributes of dried meat are also reviewed, whereby the texture of meat and the preference of the market are emphasized. There are other aspects and concerning issues that are suggested for future studies. It is well-known that reducing the water content in meat helps in preventing microbial growth, which in turn prevents the presence of harmful substances in meat. However, drying the meat can change the characteristics of the meat itself, making consumers concerned on whether dried meat is safe to be consumed on a regular basis. It is important to consider the role of microbial enzymes and microbes in the preservation of their flavor when discussing dried meats and dried meat products. The sensory, microbiological, and safety elements of dried meat are also affected by these distinctive changes, which revolve around customer preferences and health concerns, particularly how drying is efficient in eliminating/reducing hazardous bacteria from the fish. Interestingly, some studies have concentrated on increasing the efficiency of dried meat production to produce a safer range of dried meat products with less effort and time. This review compiled important information from all available online research databases. This review may help the food sector in improving the efficiency and safety of meat drying, reducing food waste, while maintaining the quality and nutritional content of dried meat.
Systems biology is an interdisciplinary study that involves a combination of expertise in biology, chemistry, mathematics, physics, and engineering to unravel the biology of complex living systems by incorporating multiple kinds of quantitative molecular computations by using sophisticated mathematical models. This interdisciplinary study can be applied to identify and understand molecular and metabolic changes in recalcitrant plant species. Many tropical plants with recalcitrant seeds have difficulty with long-term seed storage and preservation due to their intolerance to desiccation and low temperatures. The aim of this review was to explore and discuss how omics analyses can assist in elucidating molecular responses and metabolic changes of recalcitrant seed species. Genomics and transcriptomics analyses identified genes, such as late embryogenesis abundant (LEA), that were highly expressed after exposure to desiccation and low temperatures. Meanwhile, proteomic analysis using 2D gel electrophoresis, MALDI-TOF MS, or MS/MS analysis revealed dehydrins induced from recalcitrant seeds upon exposure to desiccation and low temperatures. Metabolomic analysis using liquid chromatography–mass spectrometry (LC–MS) and gas chromatography–mass spectrometry (GC–MS) profiling of recalcitrant seeds has discovered metabolites such as sugar and organic acid changes in recalcitrant seeds at different developmental stages. This information may contribute to comprehending the behaviour of recalcitrant seeds and provide insight into how crop management can be improved in terms of seed storage for conservation in order to maintain plant biodiversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.