Multiple myeloma (MM) is an exceptionally complicated and heterogeneous disease that is caused by the abnormal proliferation of malignant monoclonal plasma cells initiated in the bone marrow. In disease progression, a multistep process including differentiation, proliferation, and invasion is involved. Despite great improvement in treatment outcomes in recent years due to the substantial discovery of novel therapeutic drugs, MM is still regarded as an incurable disease. Patients with MM are afflicted by confronting remission periods accompanied by relapse or progression outcomes, which inevitably progress to the refractory stage. In this regard, MM may need new medications or modifications in therapeutic strategies to overcome resistance. A variety of genetic abnormalities (e.g., point mutations, translocations, and deletions) and epigenetic changes (e.g., DNA methylation, histone modification, and non-coding RNA) contribute to the pathogenesis and development of MM. Here, we review the significant roles of epigenetic mechanisms in the development and progression of MM. We also highlight epigenetic pathways as potential novel treatment avenues for MM, including their interplay, use of epigenetic inhibitors, and major involvement in immuno-oncology.
Venous thromboembolism (VTE), which encompasses deep venous thrombosis (DVT) and pulmonary embolism (PE), is a major public health concern due to its high incidences of morbidity and mortality. Patients who have experienced trauma with prolonged immobilization are at an increased risk of developing VTE. Plasma D-dimer levels have been known to be elevated in trauma patients, and they were closely correlated with the number of fractures. In other words, plasma D-dimer levels cannot be used as the only indicator of VTE in trauma cases. Given the limitations, further study is needed to explore other potential biomarkers for diagnosing VTE. To date, various established and novel VTE biomarkers have been studied in terms of their potential for predicting VTE, diagnostic performance, and improving clinical therapy for VTE. Therefore, this review aims to provide information regarding classic and essential haemostasis (including prothrombin time (PT), activated partial thromboplastin time (aPTT), D-dimer, fibrinogen, thrombin generation, protein C, protein S, antithrombin, tissue factor pathway inhibitor, and platelet count) and inflammatory biomarkers (C-reactive protein, erythrocyte sedimentation rate, and soluble P-selectin) as potential diagnostic biomarkers that can predict the risk of VTE development among trauma patients with prolonged immobilization. Thus, further advancement in risk stratification using these biomarkers would allow for a better diagnosis of patients with VTE, especially in areas with limited resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.