Radiotherapy for head and neck cancers exposes small parts of the brain to radiation, resulting in radiation-induced changes in cerebral tissue. In this review, we determine the correlation between cognitive deterioration in patients with head and neck cancer after radiotherapy and magnetic resonance imaging (MRI) changes. Systematic searches were performed in PubMed, Scopus, and Cochrane databases in February 2021. Studies of head and neck cancer patients treated with radiotherapy and periodical cognitive and MRI assessments were included. Meta-analysis was performed to analyse the correlation of Montreal Cognitive Assessment (MoCA) scores to MRI structural and functional changes. Seven studies with a total of 404 subjects (irradiated head and neck patients, n = 344; healthy control, n = 60) were included. Most studies showed the significance of MRI in detecting microstructural and functional changes in association with neurocognitive function. The changes were seen in various brain areas, predominantly the temporal region, which also shows dose dependency (6/7 studies). An effect size (r = 0.43, p < 0.001) was reported on the correlation of MoCA scores to MRI structural and functional changes with significant correlations shown among patients treated with head and neck radiotherapy. However, the effect size appears modest.
Background Glioma irradiation often unavoidably damages the brain volume and affects cognition. This study aims to evaluate the relationship of remote cognitive assessments in determining cognitive impairment of irradiated glioma patients in relation to the quality of life and MRI changes. Methods Thirty patients (16-76 aged) with two imaging (pre-and post-RT) and completed cognitive assessments were recruited. Cerebellum, right and left temporal lobes, corpus callosum, amygdala and spinal cord were delineated and their dosimetry parameters were collected. Cognitive assessments were given post-RT via telephone (Telephone Interview Cognitive Status (TICS), Telephone Montreal Cognitive Assessment (T-MoCA), Telephone Mini Addenbrooke's Cognitive Examination (Tele-MACE)). Regression models and deep neural network (DNN) were used to evaluate the relationship between brain volume, cognition and treatment dose in patients.Results Cognitive assessments were highly inter-correlated (r > 0.9) and impairment was shown between pre-and post-RT findings. Brain volume atrophy was shown post-RT, and cognitive impairments were correlated with radiotherapy-associated volume atrophy and dose-dependent in the left temporal lobe, corpus callosum, cerebellum and amygdala. DNN showed a good area under the curve for cognitive prediction; TICS (0.952), T-MoCA (0.909) and Tele-MACE (0.822). Conclusions Cognition can be evaluated remotely in which radiotherapy-related brain injury is dose-dependent and volumedependent. Prediction models can assist in the early identification of patients at risk for neurocognitive decline following RT for glioma, thus facilitating potential treatment interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.