Astroturfing is a phenomenon in which sponsors of fake messages or reviews are masked because their intentions are not genuine. Astroturfing reviews are intentionally made to influence people to take decisions in favour of or against a target service or product or organization. The tourism sector being one of the sectors that is flourishing and witnessing unprecedented growth is affected by the activities of astroturfers. Astroturfing reviews can cause many problems to tourists who make decisions based on available online reviews. However, authentic and genuine reviews help people make informed decisions. In this paper a Latent Dirichlet Allocation (LDA) based Group Topic-Author model is proposed for efficient discovery of social astroturfing groups within the tourism domain. An algorithm named Astroturfing Group Topic Detection (AGTD) is defined for the implementation of the proposed model. The experimental results of this study revealed the utility of the proposed system for the discovery of social astroturfing groups within the tourism domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.