Mixed Fe 2 O 3 -NiO thin films have been prepared by chemical Spray pyrolysis technique onto glass substrate preheated to 450 °C. The thickness of thin films was found to be (400 ±20) nm. XRD measurements reveal that all the film exhibit polycrystalline hexagonal wrutzite with a preferred orientation along (104) plane for pure and 10 % and 20 % Ni, while for the rest the structure was amorphous. AFM analysis indicate a nanostructure for all the films. The optical energy gap was found to be increased from optical transitions seems to be direct and the optical energy gap seems to be increased from 2.5 to 2.69 eV as the percentage of NiO increase.
Mixed Fe2O3 - NiO thin films have been prepared by chemical Spray pyrolysis technique onto glass substrate preheated to 450 °C. The thickness of thin films was found to be (400 ±20) nm. XRD measurements reveal that all the film exhibit polycrystalline hexagonal wrutzite with a preferred orientation along (104) plane for pure and 10 % and 20 % Ni, while for the rest the structure was amorphous. AFM analysis indicate a nanostructure for all the films. The optical energy gap was found to be increased from optical transitions seems to be direct and the optical energy gap seems to be increased from 2.5 to 2.69 eV as the percentage of NiO increase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.