Background: Oxidative stress is associated with the pathogenesis of cigarette smoke related lung diseases, but longitudinal effects of smoking cessation on oxidant markers in the airways are unknown.
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality around the world. However, the exact mechanisms leading to COPD and its progression are still poorly understood. In this study, induced sputum was analyzed by cysteine-specific two-dimensional difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry to identify proteins involved in COPD pathogenesis. The comparison of nonsmokers, smokers, and smokers with moderate COPD revealed 15 changed proteins with the majority, including polymeric immunoglobulin receptor (PIGR), being elevated in smokers and subjects with COPD. PIGR, which is involved in specific immune defense and inflammation, was further studied in sputum, lung tissue, and plasma by Western blot, immunohistochemistry/image analysis, and/or ELISA. Sputum PIGR was characterized as glycosylated secretory component (SC). Lung PIGR was significantly elevated in the bronchial and alveolar epithelium of smokers and further increased in the alveolar area in mild to moderate COPD. Plasma PIGR was elevated in smokers and smokers with COPD compared to nonsmokers with significant correlation to obstruction. In conclusion, new proteins in smoking-related chronic inflammation and COPD could be identified, with SC/PIGR being one of the most prominent not only in the lung but also in circulating blood.
BackgroundA significant number of young people start smoking at an age of 13-15, which means that serious smoking-evoked changes may have been occurred by their twenties. Surfactant proteins (SP) and matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) have been linked to cigarette smoke induced lung remodelling and chronic obstructive pulmonary disease (COPD). However, the level of these proteins has not been examined during ageing or in young individuals with short smoking histories.MethodsPlasma levels of SP-A, SP-D, MMP-9, and TIMP-1 were measured by EIA/ELISA from young (18-23 years) non-smoking controls (YNS) (n = 36), smokers (YS) (n = 51), middle aged/elderly (37-77 years) non-smoking controls (ONS) (n = 40), smokers (OS) (n = 64) (FEV1/FVC >0.7 in all subjects) and patients with COPD (n = 44, 35-79 years).ResultsPlasma levels of SP-A increased with age and in the older group in relation to smoking and COPD. Plasma SP-D and MMP-9 levels did not change with age but were elevated in OS and COPD as compared to ONS. The TIMP-1 level declined with age but increased in chronic smokers when compared to ONS. The clearest correlations could be detected between plasma SP-A vs. age, pack years and FEV1/FVC. The receiver operating characteristic (ROC) curve analysis revealed SP-A to be the best marker for discriminating between patients with COPD and the controls (area under ROC curve of 0.842; 95% confidence interval, 0.785-0.899; p < 0.001).ConclusionsAge has a significant contribution to potential markers related to smoking and COPD; SP-A seems to be the best factor in differentiating COPD from the controls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.