Artificial Bee Colony (ABC) algorithm is considered new and widely used in searching for optimum solutions. This is due to its uniqueness in problem-solving method where the solution for a problem emerges from intelligent behaviour of honeybee swarms. This paper proposes the use of the ABC algorithm as a new tool for Data Mining particularly in classification tasks. Moreover, the proposed ABC for Data Mining were implemented and tested against six traditional classification algorithms classifiers. From the obtained results, ABC proved to be a suitable candidate for classification tasks. This can be proved in the experimental result where the performance of the proposed ABC algorithm has been tested by doing the experiments using UCI datasets. The results obtained in these experiments indicate that ABC algorithm are competitive, not only with other evolutionary techniques, but also to industry standard algorithms such as PART, SOM, Naive Bayes, Classification Tree and Nearest Neighbour (kNN), and can be successfully applied to more demanding problem domains.
This paper presents Bat Algorithm and K-Means techniques for classification performance improvement. The objective of this study is to investigate efficiency of Bat Algorithm in discrete dataset and to find the optimum feature in discrete dataset. In this study, one technique that comprise the discretization technique and feature selection technique have been proposed. Our contribution is in two process of classification: pre-processing and feature selection process. First, to proposed discretization techniques called as BkMD, where we hybrid Bat Algorithm technique and K-Means classifier. Second, to proposed BkMDFS as feature selection technique where Bat Algorithm is embed into BkMD. In order to evaluate our proposed techniques, 14 continuous dataset from various applications are used in experiment. From the experiment, results show that BkMDFS outperforms in most performance measures. Hence it shows that, Bat Algorithm have potential to be one of the discretization technique and feature selection technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.