BackgroundReproductive proteins often evolve rapidly and are thought to be subject to strong sexual selection, and thus may play a key role in reproductive isolation and species divergence. However, our knowledge of reproductive proteins has been largely limited to males and model organisms with sequenced genomes. With advances in sequencing technology, Lepidoptera are emerging models for studies of sexual selection and speciation. By profiling the transcriptomes of the bursa copulatrix and bursal gland from females of two incipient species of moth, we characterize reproductive genes expressed in the primary reproductive tissues of female Lepidoptera and identify candidate genes contributing to a one-way gametic incompatibility between Z and E strains of the European corn borer (Ostrinia nubilalis).ResultsUsing RNA sequencing we identified transcripts from ~37,000 and ~36,000 loci that were expressed in the bursa copulatrix or the bursal gland respectively. Of bursa copulatrix genes, 8% were significantly differentially expressed compared to the female thorax, and those that were up-regulated or specific to the bursa copulatrix showed functional biases toward muscle activity and/or organization. In the bursal gland, 9% of genes were differentially expressed compared to the thorax, with many showing reproduction or gamete production functions. Of up-regulated bursal gland genes, 46% contained a transmembrane region and 16% possessed secretion signal peptides. Divergently expressed genes in the bursa copulatrix were exclusively biased toward protease-like functions and 51 proteases or protease inhibitors were divergently expressed overall.ConclusionsThis is the first comprehensive characterization of female reproductive genes in any lepidopteran system. The transcriptome of the bursa copulatrix supports its role as a muscular sac that is the primary site for disruption of the male ejaculate. We find that the bursal gland acts as a reproductive secretory body that might also interact with male ejaculate. In addition, differential expression of proteases between strains supports a potential role for these tissues in contributing to reproductive isolation. Our study provides new insight into how male ejaculate is processed by female Lepidoptera, and paves the way for future work on interactions between post-mating sexual selection and speciation.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-189) contains supplementary material, which is available to authorized users.
Theory predicts that selection acting across environments should erode genetic variation in reaction norms; i.e., selection should weaken genotype × environment interaction (G × E). In spite of this expectation, G × E is often detected in fitness-related traits. It thus appears that G × E is at least sometimes sustained under selection, a possibility that highlights the need for theory that can account for variation in the presence and strength of G × E. We tested the hypothesis that trait differences in developmental architecture contribute to variation in the expression of G × E. Specifically, we assessed the influence of canalization (robustness to genetic or environmental perturbations) and condition-dependence (association between trait expression and prior resource acquisition or vital cellular processes). We compared G × E across three trait types expected to differ in canalization and condition-dependence: mating signals, body size-related traits, and genitalia. Because genitalia are expected to show the least condition-dependence and the most canalization, they should express weaker G × E than the other trait types. Our study species was a member of the Enchenopa binotata species complex of treehoppers. We found significant G × E in most traits; G × E was strongest in signals and body traits, and weakest in genitalia. These results support the hypothesis that trait differences in developmental architecture (canalization and condition-dependence) contribute to variation in the expression of G × E. We discuss implications for the dynamics of sexual selection on different trait types.
The scaling of traits on body size—allometry—is a subject of broad interest in ecology and evolutionary biology, and one in which studies on insects and spiders have featured prominently. Allometric relationships are described with the slope of regressions of trait size (y) on body size (x). A common method—ordinary least squares (OLS) regression—is often expected to underestimate allometric slopes. The reason for this expectation is that OLS regression assumes that x is determined without error, which is expected to bias slope estimates unless the error in y is much larger than the error in x. However, alternative methods such as reduced major axis (RMA) regression suffer from problems of interpretability. Here, we test the hypothesis that OLS regression will underestimate allometric slopes. We used a natural experiment that arose in the course of training to measure insect genitalia, wherein measurement error for genitalia was larger before training than after training, and also differed by a very large amount between traits. Comparing allometric slopes estimated before and after training, and allometric slopes of traits having very different measurement errors, suggests that OLS regression is robust to measurement error in x and that it does not underestimate allometric slopes.
Mating triggers a cascade of physiological and behavioural responses in females that persist after copulation. In insects, seminal fluid proteins contained within male ejaculates are known to initiate some responses, but our understanding of how females mediate these reactions remains limited. Few studies have examined postmating transcriptional changes within ejaculate-receiving organs within females or how these changes might depend on the identity of the male. Furthermore, whereas males of many insects transfer packaged ejaculates, transcriptional dynamics have mainly been examined in dipterans, in which males transfer a free ejaculate. To identify genes that may be important in mediating female physiological responses in a spermatophore-producing species, we sequenced the transcriptomes of the ejaculate-receiving organs and examined postmating gene expression within and between pheromone strains of the European corn borer (ECB) moth, Ostrinia nubilalis. After within-strain mating, significant differential expression of 978 transcripts occurred in the female bursa or its associated bursal gland, including peptidases, transmembrane transporters, and hormone processing genes; such genes may potentially play a role in postmating male-female interactions. We also identified 14 transcripts from the bursal gland that were differentially expressed after females mated with cross-strain males, representing candidates for previously observed postmating reproductive isolation between ECB strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.