Citrus fruit and in particular flavonoid compounds from citrus peel have been identified as agents with utility in the treatment of cancer. This review provides a background and overview regarding the compounds found within citrus peel with putative anticancer potential as well as the associated in vitro and in vivo studies. Historical studies have identified a number of cellular processes that can be modulated by citrus peel flavonoids including cell proliferation, cell cycle regulation, apoptosis, metastasis, and angiogenesis. More recently, molecular studies have started to elucidate the underlying cell signaling pathways that are responsible for the flavonoids’ mechanism of action. These growing data support further research into the chemopreventative potential of citrus peel extracts, and purified flavonoids in particular. This critical review highlights new research in the field and synthesizes the pathways modulated by flavonoids and other polyphenolic compounds into a generalized schema.
Cancer cell mitochondria are promising anticancer drug targets because they control cell death and are structurally and functionally different from normal cell mitochondria. We synthesized arylurea fatty acids and found that the analogue 16-({[4-chloro-3-(trifluoromethyl)phenyl]carbamoyl}amino)hexadecanoic acid (13b) decreased proliferation and activated apoptosis in MDA-MB-231 breast cancer cells in vitro and in vivo. In mechanistic studies 13b emerged as the prototype of a novel class of mitochondrion-targeted agents that deplete cardiolipin and promote cancer cell death.
PURPOSE. The aim of this study was to investigate the mechanism of (S)-[6]-gingerol in promoting glucose uptake in L6 skeletal muscle cells. METHODS. The effect of (S)-[6]-gingerol on glucose uptake in L6 myotubes was examined using 2-[1,2-3 H]-deoxy-D-glucose. Intracellular Ca 2+ concentration was measured using Fluo-4. Phosphorylation of AMPKα was determined by Western blotting analysis. RESULTS. (S)-[6]-Gingerol time-dependently enhanced glucose uptake in L6 myotubes. (S)-[6]-Gingerol elevated intracellular Ca 2+ concentration and subsequently induced a dose-and time-dependent enhancement of threonine172 phosphorylated AMPKα in L6 myotubes via modulation by Ca 2+ /calmodulin-dependent protein kinase kinase. CONCLUSION. The results indicated that (S)-[6]-gingerol increased glucose uptake in L6 skeletal muscle cells by activating AMPK. (S)-[6]-gingerol, a major component of Zingiber officinale, may have potential for development as an antidiabetic agent.
Objective:
This review collates the published reports that focus on microbial and viral illnesses that can be transmitted by breast milk, donor milk and powdered infant formula (PIF). In this context, we attempt to define a risk framework encompassing those hazards, exposure scenarios, vulnerability and protective factors.
Design:
A literature search was performed for reported cases of morbidity and mortality associated with different infant feeding modes.
Setting:
Exclusive breast-feeding is the recommended for infant feeding under 6 months, or failing that, provision of donated human milk. However, the use of PIF remains high despite its intrinsic and extrinsic risk of microbial contamination, as well as the potential for adverse physiological effects, including infant gut dysbiosis.
Results:
Viable pathogen transmission via breast-feeding or donor milk (pasteurised and unpasteurised) is rare. However, transmission of HIV and human T-cell lymphotropic virus-1 is a concern for breast-feeding mothers, particularly for mothers undertaking a mixed feeding mode (PIF and breast-feeding). In PIF, intrinsic and extrinsic microbial contamination, such as Cronobacter and Salmonella, remain significant identifiable causes of infant morbidity and mortality.
Conclusions:
Disease transmission through breast-feeding or donor human milk is rare, most likely owing to its complex intrinsically protective composition of human milk and protection of the infant gut lining. Contamination of PIF and the morbidity associated with this is likely underappreciated in terms of community risk. A better system of safe donor milk sharing that also establishes security of supply for non-hospitalised healthy infants in need of breast milk would reduce the reliance on PIF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.