ORM (yeast)-Like protein isoform 3 (ORMDL3) has recently been identified as a candidate gene for susceptibility to asthma; however the mechanisms by which it contributes to asthma pathogenesis are not well understood. Here we demonstrate a functional role for ORMDL3 in eosinophils in the context of allergic inflammation. Eosinophils recruited to the airways of allergen-challenged mice express ORMDL3. ORMDL3 expression in bone marrow eosinophils is localized in the endoplasmic reticulum and is induced by IL-3 and eotaxin-1. Over-expression of ORMDL3 in eosinophils causes increased rolling, distinct cytoskeletal rearrangement, ERK (1/2) phosphorylation and nuclear translocation of NF-κB. Knock-down of ORMDL3 significantly inhibits activation-induced cell shape changes, adhesion and recruitment to sites of inflammation in vivo, combined with reduced expression of CD49d and CD18. Additionally, ORMDL3 regulates IL-3-induced expression of CD48 and CD48-mediated eosinophil degranulation. These studies show that ORMDL3 regulates eosinophil trafficking, recruitment and degranulation, further elucidating a role for this molecule in allergic asthma and potentially other eosinophilic disorders.
CD16b (FcγRIIIb) is exclusively expressed by human neutrophils and binds IgG in immune complexes. Cell surface CD16b undergoes efficient ectodomain shedding upon neutrophil activation and apoptosis. Indeed, soluble CD16b is present at high levels in the plasma of healthy individuals, which appears to be maintained by the daily turnover of apoptotic neutrophils. At this time, the principal protease responsible for CD16b shedding is not known. We show that CD16b plasma levels were significantly decreased in patients administered a selective inhibitor targeting the metalloproteases ADAM10 and ADAM17. Additional analysis with inhibitors selective for ADAM10 or ADAM17 revealed that only inhibition of ADAM17 significantly blocked the cleavage of CD16b following neutrophil activation and apoptosis. CD16b shedding by ADAM17 was further demonstrated using a unique ADAM17 function-blocking mAb and a cell-based ADAM17 reconstitution assay. Unlike human CD16, however, mouse CD16 did not undergo efficient ectodomain shedding upon neutrophil stimulation or apoptosis, indicating that this mechanism cannot be modeled in normal mice. Taken together, our findings are the first to directly demonstrate that ADAM17 cleaves CD16 in human leukocytes.
Allergic inflammation involves the mobilization and trafficking of eosinophils to sites of inflammation. Galectin-3 (Gal-3) has been shown to play a critical role in eosinophil recruitment and airway allergic inflammation in vivo. The role played by Gal-3 in human eosinophil trafficking was investigated. Eosinophils from allergic donors expressed elevated levels of Gal-3 and demonstrated significantly increased rolling and firm adhesion on immobilized VCAM-1 and, more surprisingly, on Gal-3 under conditions of flow. Inhibition studies with specific mAbs as well as lactose demonstrated that: 1) eosinophil-expressed Gal-3 mediates rolling and adhesion on VCAM-1; 2) α4 integrin mediates eosinophil rolling on immobilized Gal-3; and 3) eosinophil-expressed Gal-3 interacts with immobilized Gal-3 through the carbohydrate recognition domain of Gal-3 during eosinophil trafficking. These findings were further confirmed using inflamed endothelial cells. Interestingly, Gal-3 was found to bind to α4 integrin by ELISA, and the two molecules exhibited colocalized expression on the cell surface of eosinophils from allergic donors. These findings suggest that Gal-3 functions as a cell surface adhesion molecule to support eosinophil rolling and adhesion under conditions of flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.