Trial and error experiments in socioeconomics were proved to be beneficial by Nobel prize laureates. However, replication is challenging and costly in term of time and money. The approach required interventions on human society, and moral issues have to be carefully considered in research designs. This work tried to make the approach more feasible by developing virtual economic environment to allow simulated trial and error experiments to take place. This research demonstrated the framework using 19 macroeconomic indicators in 6 interested categories to study the effect on productivity if each indicator value grew by 5 percent for each of 65 countries. Seven predictive models including some machine learning (ML) models were compared. Neural network dominated in accurateness and was selected as the core of the simulator. Experimented results are in full of surprises, and the framework acted as expected to be a data-driven guide toward country-specific policy making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.