This work was supported by Grand Challenges Explorations grant from the Bill & Melinda Gates Foundation (OPP1024509), Canadian Institutes of Health Research (MOP119438 & CCI82413) and International Collaboration and Exchanges NSFC of China (No.30611120525). There are no competing interests to declare.
We have shown previously that sperm surface arylsulfatase A (ASA) of mouse, pig, and human is involved in sperm-egg zona pellucida (ZP) binding. By treating capacitated mouse sperm with A23187 to induce the acrosome reaction, we demonstrated by immunoblotting that ASA also existed in the acrosomal content and on the inner acrosomal membrane. Since mZP2 and mZP3 are known as sperm receptors, whereas mZP1 as a cross-linker of mZP2/mZP3, we determined whether purified ASA bound to mZP2 and mZP3 selectively. The three mZP glycoproteins were purified from solubilized ovarian ZP by size exclusion column chromatography. Immuno-dot blot analyses revealed that purified sperm ASA bound to mZP2 at the highest level followed by mZP3, whereas the binding of ASA to mZP1 was minimal. The results confirmed the physiological significance of sperm ASA in the ZP binding process. The binding of ASA to mZP2 and mZP3 was, however, not dependent on the active site pocket amino acids, Cys69, Lys123, and Lys302, which are pertinent to the capturing of an arylsulfate substrate, since ASA mutant with Ala substitution at these three residues still bound to mZP2 and mZP3. The availability of the active site pocket of ASA bound to the ZP suggested that ASA would still retain enzymatic activity, which might be important for subsequent sperm penetration through the ZP.
The concurrent increases in global population and sexually transmitted infection (STI) demand a search for agents with dual spermicidal and microbicidal properties for topical vaginal application. Previous attempts to develop the surfactant spermicide, nonoxynol-9 (N-9), into a vaginal microbicide were unsuccessful largely due to its inefficiency to kill microbes. Furthermore, N-9 causes damage to the vaginal epithelium, thus accelerating microbes to enter the women’s body. For this reason, antimicrobial peptides (AMPs), naturally secreted by all forms of life as part of innate immunity, deserve evaluation for their potential spermicidal effects. To date, twelve spermicidal AMPs have been described including LL-37, magainin 2 and nisin A. Human cathelicidin LL-37 is the most promising spermicidal AMP to be further developed for vaginal use for the following reasons. First, it is a human AMP naturally produced in the vagina after intercourse. Second, LL-37 exerts microbicidal effects to numerous microbes including those that cause STI. Third, its cytotoxicity is selective to sperm and not to the female reproductive tract. Furthermore, the spermicidal effects of LL-37 have been demonstrated in vivo in mice. Therefore, the availability of LL-37 as a vaginal spermicide/microbicide will empower women for self-protection against unwanted pregnancies and STI.
Proprotein convertase subtilisin/kexin 4 (PCSK4) is implicated for sperm fertilizing ability, based on studies using Pcsk4-null mice. Herein we demonstrated proprotein convertase (PC) activity in intact sperm and acrosomal vesicles. To determine whether this activity was important for sperm fertilizing ability, a peptide inhibitor was designed based on PCSK4 prodomain sequence (proPC4(75-90)), which contains its primary autocatalytic cleavage site. ProPC4(75-90) inhibited recombinant PCSK4's activity with a K(i) value of 5.4 µM, and at 500 µM, it inhibited sperm PC activity almost completely. Treatment of sperm with proPC4(75-90) inhibited their egg fertilizing ability in a dose dependent manner. Correlation between sperm PC activity and fertilizing ability showed a high co-efficient value (>0.9), indicating the importance of sperm PC activity in fertilization. In particular, sperm PC activity was important for capacitation and zona pellucida (ZP)-induced acrosome reaction, since proPC4(75-90) -treated sperm showed markedly decreased rates in these two events. These results were opposite to those observed in Pcsk4-null sperm, which contained higher PC activity than wild type sperm, possibly due to overcompensation by PCSK7, the other PCSK enzyme found in sperm. ADAM2 (45 kDa), a sperm plasma membrane protein, involved in sperm-egg plasma membrane interaction, was also processed into a smaller form (27 kDa) during capacitation at a much reduced level in proPC4(75-90) -treated sperm. This result suggested that ADAM2 may be a natural substrate of sperm PCSK4 and its cleavage by the enzyme during acrosome reaction may be relevant to the fertilization process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.