Malaysia has initiated a range of pre-project activities in preparation for its planned nuclear power programme. Clearly one of the first steps is the selection of sites that are deemed suitable for the construction and operation of a nuclear power plant. Here we outline the Malaysian regulatory requirements for nuclear power plant site selection, emphasizing details of the selection procedures and site characteristics needed, with a clear focus on radiation safety and radiation protection in respect of the site surroundings. The Malaysia Atomic Energy Licensing Board (AELB) site selection guidelines are in accord with those provided in International Atomic Energy Agency (IAEA) and United Stated Nuclear Regulatory Commission (USNRC) documents. To enhance the suitability criteria during selection, as well as to assist in the final decision making process, possible assessments using the site selection characteristics and information are proposed.
Abstract. Malaysia is planning to build a nuclear power plant (NPP) by 2030 to diversify the national electricity supply and resources. Selection of an NPP site must consider various factors, especially nuclear safety consideration to fulfil the nuclear safety objectives. Environmental Risk Assessment Analysis is a part of safety requirements by the International Atomic Energy Agency (IAEA) prior to the NPP commissioning process. Risk Assessments Analysis (RIA) is compulsory for the NPP site evaluation. One of RIA methods are Radioactive Dispersion Analysis using probabilistic risk analysis software. It is also important to perform studies to estimate the impact to the neighbouring population in the case of a nuclear accident at the power plant. In the present work, aimed to study the impact of a hypothetical nuclear accident by simulating the dispersion pattern of radionuclides originated from a candidate site at Manjung, Perak. The work has been performed using the HotSpot Health Physics codes. Two types of radionuclides have been considered namely I at major towns in Perak such as Lumut and Sitiawan are 1.2 mSv and 9.9 mSv. As for Taiping, Ipoh, Kampar, and Teluk Intan the estimated TEDE is around 0.2 mSv and 1.6 mSv respectively. In conclusion, the dispersion can reach as far as 80 km from the site. However, estimated annual effective dose is not more than 1 mSv limit, which is considered acceptable in the point of view of radiological health risk for human and the environment.
An extensive survey was carried out for gamma dose rates (GDRs) in the Mersing district, Johor, Malaysia. The average value of GDR measured in the district was found to be 140 nGy h(-1), in the range of 40-355 nGy h(-1). The mean weighted dose rate to the population, annual effective dose equivalent, collective effective dose equivalent, lifetime cancer risk were 0.836 mSv y(-1), 0.171 mSv, 1.18 × 10(1) man Sv y(-1) and 6.98 × 10(-4) Sv y, respectively. An isodose map was produced for the district. One way analysis of variance was used to test for differences due to different geological formations present in the Mersing District.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.