<span lang="EN-US">Brushless DC (BLDC) motor is widely used for various applications such as transportation. BLDC motor has many advantages compared to brush motor such as more compact, high robustness and simplest construction. The maintenance of this motor also low compared to brush motor due to absent of the brush inside the motor. For electric bicycle application, the conventional motor has low electromagnetic torque because not properly designed. It faces low torque density as the motor in full load condition especially during climb uphill. In this research, an optimum magnetic energy is being determine by proper selection of permanent magnet size. In addition, this research also increases the input current in dynamic condition into the designed BLDC motor. Finite element method (FEM) is used to analyze other performance characteristic of improved motor such as back electromotive force (EMF), electromagnetic torque, flux linkage, and stator flux density. Parameter for improve the current motor are selected and varied based on the required specification. In conclusion, the research proposed the new motor specification that has highest electromagnetic torque of brushless DC motor. Finally, this research provides guidelines, suggestions and proposes a better improved structure in optimize the magnetic energy in BLDC motor.</span>
This paper discusses the modeling and analysis of three phase double stator slotted rotor permanent magnet generator (DSSR-PMG). The use of double stator topology through the double magnetic circuit helps to maximize the usage of flux linkage in the yoke structure of the single stator topology. The analytical computation is done using Permeance Analysis Method (PAM). Finite Element Analysis (FEA) is used for numerical verifications and to verify the design structure a prototype laboratory is performed. The analysis is done with various loading conditions to derive the electromagnetic torque, output power and efficiency for the proposed structure. The analytical, numerical and experimental results from the analysis are found to be in good agreement. The maximum power developed by this generator at rated speed of 2000 rpm is of 1 kW with the operational efficiency of 75%. A rectifier bridge circuit is used to make the generated voltage a storage capable constant voltage to make it suitable for mobile applications (such as Direct Current DC generator). The proposed generator structure is highly recommended for applications such as micro-hydro and small renewable plants.
This study discusses the modelling of torque and speed characterisation of the double stator slotted rotor brushless DC motor (DSSR-BLDC). Most double stators have a surface mount rotor structure. The problem with this structure is that it has a large air gap, expensive permanent magnet, and cannot operate at high speed. In addition to flux leakage when this type of rotor structure is used. To overcome this problem, the DSSR-BLDC has been introduced. The usage of the DSSR-BLDC is to minimise the flux leakage, thus increasing the flux linkage. This will increase the torque production for the DSSR-BLDC. The aim of this research is to model the torque and speed characterisation of the DSSR-BLDC. This model uses the permeance analysis method and finite element method. The maximum torque and speed can be determined using both methods. The analyses of the electromagnetic torque, output power, and efficiency for various voltages are also presented. The simulation and measurement result show a good agreement with each other. The highest measurement value of the electromagnetic torque is 11 N m at 100 rpm. In conclusion, this study reveals that the modelling of the torque and speed characterisation of the DSSR-BLDC is suitable for portable applications.
This paper presents an analysis of Direct Power Control (DPC) technique for the Three-Phase Pulse Width Modulation (PWM) AC-DC converter under unbalanced supply condition. Unbalance condition will cause the presence of unbalanced current and voltages thus produce the negative components on the grid voltage as well as severe performance degradation of a grid connected Voltage Source Inverter (VSI). The input structures for conventional DPC has been modified with a three simpler sequence networks instead of coupled by a detailed Three-Phase system method. The imbalance voltage can be resolved by separating from the individual elements of voltage and current into symmetrical components called Sequence Network. Consequently, the input power relatively improved during unbalanced condition almost 70% through the measurement of Total Harmonic Distortion (THD) from the conventional Direct Power Control (DPC) in individual elements which is higher compared to separate components. Hence, several analyses are performed in order to analyze the steady state and dynamic performance of the converter, particularly during the load and DC voltage output reference variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.