NanosizedTiO2powder was synthesized via sol-gel method using titanium tetraisopoxide (TPT) as the precursor. Mol ratios of water to TPT were varied from 1 (Powder A), 2 (Powder B), 3 (Powder C), and 4 (Powder D) to evaluate effect of hydrolysis degree. TG/DTA curves showed that amorphous phase turned to anatase crystal structure at ca. 415, 337, 310, and339∘C for Powders A, B, C, and D, respectively. XRD analysis showed that all the synthesizedTiO2powders were 100% in anatase form with Powders B and C showing considerably higher crystallinities. The powders obtained at lower water to TPT mol ratios were spherical in shape and they became bar-like shapes higher mol ratios. The lower hydrolysis degree led to higher surface area of the Powder A (24.8 m2/g) compared to Powder B (14.6 m2/g). From phenol photocatalytic measurement, Powder B was the most efficient attributed to its higher crystallinity.
Photocatalysis has been proven effective in controlling various environmental problems originated by pollutions both in liquid and gaseous phases. Titanium dioxide (TiO2) is well known the most practical photocatalyst as it has high photocatalytic efficiency, low band gap energy, and no toxicity. Various chemical methods have been tried to produce TiO2 photocatalyst powder with high activity. In this study, sol-gel method has been employed to produce nanosized TiO2 photocatalyst particles and its physical properties and photocatalytic activity in phenol degradation test were compared with the commercial TiO2 powder, Degussa P25. The synthesis process was carried out through hydrolysis of titanium tetraisopropoxide (TPT) and methanol where the molar ratio of water to TPT was monitored to control the hydrolysis rate. From X-Ray Diffraction (XRD) analysis, the sol-gel TiO2 powder obtained was fully in anatase structure with high crystallinity. Scanning Electron Microscope (SEM) measurement showed that the powder was in nanoto sub-micron size, spherical in shape, and tightly agglomerated. Thermal analysis confirmed that sol-gel derived amorphous TiO2 powder transformed to anatase phase after 400°C calcination. The test on photocatalytic performance conducted using aqueous solution of phenol as the representative of water pollutant examined in this study showed that the sol-gel TiO2 powder is more efficient in degrading phenol compared to one of the most active photocatalysts commercially available, Degussa P25.
The death association of Al-Ikhlas referred to above is a group of people formed to achieve a common goal. Where the purpose of forming the Al-Ikhlas death association is to help members who are members of it in the event of death. This association provides compensation in the form of funds obtained through the contributions of each member to families who have died in order to make it easier for the family to organize the management of the remains. The Al-Ikhlas Death Association was founded in 2015 which was initiated by one of the religious leaders on Jl. H. Arief Tembilahan Hulu. Untilnow, the Al-Ikhlas death association has 284 members. This research was conducted to understand and examine the implementation of Islamic Inheritance Law in the Al-Ikhlas death association Jln. H. Arief Tembilahan Hulu, 2022. The type of research applied is empirical legal research (socio-legal) or sociological jurisprudence. Based on the results of the research, it was found that in the communion community with the death of Al-Ikhlas Jln. H. Arief Tembilahan Hulu, in 2022 the law of inheritance explains that there is an impact of Islamic inheritance law on the inheritance law of the fellowship of Al-Ikhlas's death Jln. H. Arief Tembilahan Hulu, 2022. Its application in the Al-Ikhlas death fellowship community Jln. H. Arief Tembilahan Hulu, in 2022 he has implemented the provisions contained in the Islamic Inheritance Law.
The synthesis of Ag-TiO2 coating using AgNO3 precursor is expected to give the properties as pure as Ag nanoparticles. Commonly, high concentration of Ag attributed to agglomeration of silver species and reduction to Ag0 particles on TiO2 surface. In contrast, at lower concentration, Ag species exist as AgO, Ag2O and Ag0. Hence, the exact amount of Ag, which can effectively control the particle growth and agglomeration, surface area, thermal stability and band gap of the TiO2 coating, are still vague and stated differently. In the present study, the effect of Ag content on the phase transformation and surface morphology of Ag-TiO2 coating were reported. TiO2 sol were prepared by incorporating Ag at 2.5, 5 and 7.5 mol % and deposited on unglazed ceramic tiles thru five times dip coating. The deposited Ag-TiO2 coatings were heat treated at 500 °C for 1 hour soaking time. XRD analyses revealed that the deposited Ag-TiO2 coating consists of anatase, rutile, Ag2O and metallic Ag. Almost all the coating surfaces illustrated cracks. Increased Ag content lead to presence of tiny particles on the surfaces and EDX spectrum revealed the presence of Ti, O and metallic Ag particles. However, at the addition of 5 mol % Ag, there was no metallic Ag presence and a dense coating with the lowest thickness of ±11.4µm is observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.