Understanding the carbon dioxide (CO2) solubility in formation brines is of great importance to several industrial applications, including CO2 sequestration and some CO2 capture technologies, as well as CO2-based enhanced hydrocarbon recovery methods. Despite years of study, there are few literature data on CO2 solubility for the low salinity range. Thus, in this study, the solubility of CO2 in distilled water and aqueous ionic solutions of NaCl, MgCl2, CaCl2 and MgCl2 + CaCl2 were obtained in a low salinity range (0–15,000 ppm) at temperatures from 298–373 K and pressures up to 20 MPa using an accurate and unconventional method called potentiometric titration. An experimental data set of 553 data points was collected using this method. The results of the experiments demonstrate that increasing pressure increases the solubility of CO2 in various brines, whereas increasing temperature and salinity reduces the solubility. The role of different ions in changing the solubility is elaborated through a detailed discussion on the salting-out effect of different ionic solutions. To verify the experimental results of this research, the solubility points obtained by the potentiometric titration method were compared to some of the well-established experimental and analytical data from the literature and a very good agreement with those was obtained.
Cellulosic fiber (CF) in nanoform is emergingly finding its way for COVID-19 solution for instance via nanocomposite/ nanoparticle from various abundant biopolymeric waste materials, which may not be widely commercialized when the pandemic strikes recently. The possibility is wide open but needs proper collection of knowledge and research data. Thus, this article firstly reviews CF produced from various lignocellulosic or biomass feedstocks' pretreatment methods in various nanoforms or nanocomposites, also serving together with metal oxide (MeO) antimicrobial agents having certain analytical reporting. CF-MeO hybrid product can be a great option for COVID-19 antimicrobial resistant environment to be proposed considering the long-established CF and MeO laboratory investigations. Secondly, a preliminary pH investigation of 7 to 12 on zinc oxide synthesis discussing on Fouriertransform infrared spectroscopy (FTIR) functional groups and scanning electron microscope (SEM) images are also presented, justifying the knowledge requirement for future stable nanocomposite formulation. In addition to that, recent precursors suitable for zinc oxide nanoparticle synthesis with emergingly prediction to serve as COVID-19 purposes via different products, aligning with CFs or nanocellulose for industrial applications are also reviewed.
The inhibition efficiency of Musa sapientum (banana) peel extracts at different concentrations and temperatures on mild steel corrosion in acidic solution of 1 M hydrochloric acid (HCl) were investigated by using weight loss method. The banana peel extract concentrations were tested from 300 to 500 ppm at temperature range between 25°C to 60°C. The performance of banana peel extract as an inhibitor was found compatible in the tested solution. The corrosion rates, which were calculated from the weight loss data, showed that the inhibition efficiency of the extract increased from 86.9% to 89.0% as the concentration of banana peel extract increased from 300 ppm to 500 ppm. It was also observed that the inhibition efficiency decreased as the temperature was increased from 25°C to 60°C. Characterization of the peel extract by using gas chromatography-mass spectrometry (GC-MS) has detected the presence of bioactive compounds which are responsible for the corrosion inhibition and adsorption properties on mild steel surface. Eleven major compounds have been identified as having corrosion inhibition properties. FTIR analysis confirmed the presence of functional groups of alcohols, alkanes, carbonyls, aromatics, ethers, and esters that can prevent corrosion by adsorption on steel surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.