Recent developments in the field of machine learning (ML) have led to a renewed interest in the use of electroencephalography (EEG) to predict the outcome after traumatic brain injury (TBI). This systematic review aims to determine how previous studies have taken into consideration the important modeling issues for quantitative EEG (qEEG) predictors in developing prognostic models. A systematic search in the PubMed and Google Scholar databases was performed to identify all predictive models for the extended Glasgow outcome scale (GOSE) and Glasgow outcome scale (GOS) based on EEG data. Fourteen studies were identified that evaluated ML algorithms using qEEG predictors to predict outcome in patients with moderate to severe TBI. In each model, a maximum of five qEEG predictors were selected to determine the association between these parameters, and favorable or unfavorable predicted outcomes. The most common ML technique used was logistic regression, but the algorithms varied depending on the types and numbers of qEEG predictors selected in each model. The qEEG variability for the relative and absolute band powers were the most common qEEG predictors included in the models (46%) followed by total EEG power of all frequency bands (31%), EEG-reactivity (31%) and coherence (15%). Model performance was often quantified by the area under the receiving-operating characteristic curve (AUROC) rather than by accuracy rate. Various ML models have demonstrated great potential, especially using qEEG predictors, to predict outcome in patients with moderate to severe TBI. INDEX TERMS Electroencephalography, machine learning algorithms, prediction methods, reviews.
Reliable prediction of traumatic brain injury (TBI) outcomes based on machine learning (ML) that is derived from quantitative electroencephalography (EEG) features has renewed interest in recent years. Nevertheless, the approach has suffered from imbalanced datasets. Hence, to get a reliable predictive model for predicting outcomes, specifically in a high proportion of moderate TBI with good outcomes, could be challenging. This work proposes an improved outcome predictive model that combines the absolute power spectral density (PSD) as input features for training random under-sampling boosting decision trees (RUSBoosted Trees) as a classifier. Resting-state, eyes-closed EEG data were obtained from 27 moderate TBI patients with follow-up visits. Patient outcome at 4-10 weeks to 12-month was dichotomized based on the Glasgow Outcome Scale as poor (GOS score ≤ 4) and good outcomes (GOS score = 5). The predictive values of absolute PSD from five frequency bands: δ (0.5-4Hz), θ (4-7Hz), α (7-13Hz), β (13-30Hz) and γ (30-100Hz) were evaluated to identify the most informative predictors for reliable prediction outcomes. RUSBoosted Trees performed best at discriminating patients into two outcomes categories (G-Mean = 92.95%, TP rate =100%, TN rate = 86.4%) of absolute PSD in δ and γ bands, which was excellent compared to the other state-of-the-art methods. The highest area under the curve (AUC) of absolute PSD in δ (AUC δ = 0.97) and γ (AUC γ = 0.95) revealed their predictive values as robust prognostic markers for prediction outcomes. The RUSBoosted Trees presents a promising result in prognosis prediction of highly imbalanced data, making it an accessible prediction tool for clinical decision-making, unlike the black-box approaches.
The computational electroencephalogram (EEG) is recently garnering significant attention in examining whether the quantitative EEG (qEEG) features can be used as new predictors for the prediction of recovery in moderate traumatic brain injury (TBI). However, the brain’s recorded electrical activity has always been contaminated with artifacts, which in turn further impede the subsequent processing steps. As a result, it is crucial to devise a strategy for meticulously flagging and extracting clean EEG data to retrieve high-quality discriminative features for successful model development. This work proposed the use of multiple artifact rejection algorithms (MARA), which is an independent component analysis (ICA)-based algorithm, to eliminate artifacts automatically, and explored their effects on the predictive performance of the random undersampling boosting (RUSBoost) model. Continuous EEG were acquired using 64 electrodes from 27 moderate TBI patients at four weeks to one-year post-accident. The MARA incorporates an artifact removal stage based on ICA prior to RUSBoost, SVM, DT, and k-NN classification. The area under the curve (AUC) of RUSBoost was higher in absolute power spectral density (PSD) in AUCδ = 0.75, AUC α = 0.73 and AUCθ = 0.71 bands than SVM, DT, and k-NN. The MARA has provided a good generalization performance of the RUSBoost prediction model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.