Minimization of energy consumption was explored for countercurrent switched cryogenic packed beds in which separation of CO2 and other components of natural gas can be achieved based on differences in freezing or desublimation points. Highly pure CO2 and methane were obtained after separation. An experimental setup for CO2 removal from natural gas was constructed and a detailed experimental study was conducted by changing different operating parameters. Compared to other cocurrent or jacket‐cooled constant‐temperature configurations, countercurrent switched beds provided optimal separation and energy efficiencies. The effects of important process parameters like initial temperature profiles of the cryogenic bed, feed composition, and feed flow rate on energy requirement, bed saturation, bed pressure, and cycling times were investigated. The energy requirement for cryogenic packed beds was compared with the conventional cryogenic distillation process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.