The understanding of the interaction of nanoparticles with cell membranes and the penetration of these nanoobjects through cell wall is highly required for their biomedical application. In this work were aimed at the study of the interaction of gold nanoparticles with model phospholipid membranes prepared at the air/water interface in a Langmuir trough. Spherical (10 and 15 nm mean diameter) and rod-like gold (aspect ratio: 2.8) nanoparticles were synthesized and biofunctionalized with L-cysteine and L-glutathione. The gold nanoparticles were characterized by TEM images and UV-Vis absorbance measurements. The interaction of the biofunctionalized gold nanoparticles with the model monolayer membrane was studied by surface pressure versus surface area compressional isotherms and by the measurement of the change in surface pressure of a preformed model membrane. The effect of the initial surface pressure of the preformed membrane was evaluated to determine the maximum insertion pressure and synergy. We have found that the driving forces of the bioconjugated Au nanoparticle (NP) or Au nanorod (NR) penetration into the monolayer membrane is mostly determined by electrostatic interaction and orientational van der Waals forces. Monolayer films were transferred with Langmuir-Blodgett technique onto solid substrates and the nanoparticles were visualized with AFM technique.
Multifunctional Langmuir-Blodgett (LB) films were fabricated on the surface of glass substrates using sol-gel derived ZnO and SiO2 particles. ZnO particles of 6 and 110 nm diameter were synthesized according to the methods of Meulenkamp and Seelig et al. (Meulenkamp, E. A. J. Phys. Chem. B 1998, 102, 5566; Seelig, E. W.; Tang, B.; Yamilov, A.; Cao, H.; Chang, R. P. H. Mater. Chem. Phys. 2003, 80, 257). Silica particles of 37 and 96 nm were prepared by the Stober method (Stober, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62). Alternate deposition of monoparticulate Langmuir films of SiO2 and ZnO nanoparticles provided complex (six- and nine-layered) LB films with both antireflective and photocatalytic properties. The LB films were investigated with scanning electron microscopy (morphology and structure) and UV-vis spectroscopy (optical properties and stability). The photocatalytic activity was measured by immersing the UV-irradiated films into an aqueous solution of Methyl Orange and following the photodegradation of the dye by optical spectroscopy. Adding ZnO particles to the silica films slightly lowered the antireflection property but ensured strong photocatalytic activity. Both the photocatalytic activity and antireflection properties were proved to be sensitive to the sequence of the silica and ZnO layers, with optimum properties in the case of nine-layered films with a repeated (SiO2-ZnO-ZnO) structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.